期刊论文详细信息
Journal of Nanobiotechnology
In vitro assessment of antibody-conjugated gold nanorods for systemic injections
Roberto Pini3  Franco Fusi5  Enrico Mini2  Giovanna Marrazza1  Andrea Ravalli1  Stefania Nobili4  Ida Landini4  Giovanni Romano5  Raffaella Mercatelli1  Alessio Gnerucci5  Fulvio Ratto3  Francesca Tatini3  Sonia Centi5 
[1] Dipartimento di Chimica ‘Ugo Shiff’, Università degli Studi di Firenze, Via della Lastruccia 3, Sesto Fiorentino, 50019, Italy;Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Largo Brambilla 3, Firenze, 50134, Italy;Istituto di Fisica Applicata ‘Nello Carrara’, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Italy;Dipartimento di Scienze della Salute, Università degli Studi di Firenze, Viale Pieraccini 6, Firenze, 50139, Italy;Dipartimento di Scienze Biomediche Sperimentali e Cliniche ‘Mario Serio’, Università degli Studi di Firenze, Viale Pieraccini 6, Firenze, 50139, Italy
关键词: Blood compatibility;    Matrix effect;    Competitive assay;    Active targeting;    Cancer antigen 125;    Gold nanorods;   
Others  :  1139299
DOI  :  10.1186/s12951-014-0055-3
 received in 2014-09-10, accepted in 2014-11-22,  发布年份 2014
PDF
【 摘 要 】

Background

The interest for gold nanorods in biomedical optics is driven by their intense absorbance of near infrared light, their biocompatibility and their potential to reach tumors after systemic administration. Examples of applications include the photoacoustic imaging and the photothermal ablation of cancer. In spite of great current efforts, the selective delivery of gold nanorods to tumors through the bloodstream remains a formidable challenge. Their bio-conjugation with targeting units, and in particular with antibodies, is perceived as a hopeful solution, but the complexity of living organisms complicates the identification of possible obstacles along the way to tumors.

Results

Here, we present a new model of gold nanorods conjugated with anti-cancer antigen 125 (CA125) antibodies, which exhibit high specificity for ovarian cancer cells. We implement a battery of tests in vitro, in order to simulate major nuisances and predict the feasibility of these particles for intravenous injections. We show that parameters like the competition of free CA125 in the bloodstream, which could saturate the probe before arriving at the tumors, the matrix effect and the interference with erythrocytes and phagocytes are uncritical.

Conclusions

Although some deterioration is detectable, anti-CA125-conjugated gold nanorods retain their functional features after interaction with blood tissue and so represent a powerful candidate to hit ovarian cancer cells.

【 授权许可】

   
2014 Centi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150321092015464.pdf 1577KB PDF download
Figure 6. 25KB Image download
Figure 5. 83KB Image download
Figure 4. 57KB Image download
Figure 3. 31KB Image download
Figure 2. 33KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Mladenov E, Magin S, Soni A, Iliakis G: DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol 2013, 10:113.
  • [2]Paulides MM, Stauffer PR, Neufeld E, Maccarini PF, Kyriakou A, Canters RA, Diederich CJ, Bakker JF, Van Rhoon GC: Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia 2013, 19:346-357.
  • [3]Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM: Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 2008, 60:977-985.
  • [4]Ibsen S, Schutt CE, Esener S: Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. Drug Des Devel Ther 2013, 7:375-388.
  • [5]Tiwari PM, Vig K, Dennis VA, Singh SR: Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 2011, 1:31-63.
  • [6]Alkilany AM, Murphy CJ: Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 2010, 12:2313-2333.
  • [7]Jeong EH, Jung G, Hong CA, Lee H: Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Arch Pharm Res 2014, 37:53-59.
  • [8]Khan MS, Vishakante GD, Siddaramaiah H: Gold nanoparticles: a paradigm shift in biomedical applications. Adv Colloid Interface Sci 2013, 199–200:44-58.
  • [9]Papasani MR, Wang G, Hill RA: Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomed Nanotech Biol Med 2012, 8:804-814.
  • [10]Tatini F, Landini I, Scaletti F, Massai L, Centi S, Ratto F, Nobili S, Romano G, Fusi F, Messori L, Mini E, Pini R: Size dependent biological profiles of PEGylated gold nanorods. J Mater Chem B 2014, 2:6072-6080.
  • [11]Fang J, Chen YC: Nanomaterials for photohyperthermia: a review. Curr Pharm Des 2013, 19:6622-6634.
  • [12]Melancon MP, Zhou M, Li C: Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc Chem Res 2011, 44:947-956.
  • [13]Jain PK, Huang X, El-Sayed IH, El-Sayed MA: Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008, 41:1578-1586.
  • [14]Young JK, Figueroa ER, Drezek RA: Tunable nanostructures as photothermal theranostic agents. Ann Biomed Eng 2012, 40:438-459.
  • [15]Choi KY, Liu G, Lee S, Chen X: Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 2012, 4:330-342.
  • [16]Ghosh P, Han G, De M, Kim CK, Rotello VM: Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008, 60:1307-1315.
  • [17]Chen H, Shao L, Li Q, Wang J: Gold nanorods and their plasmonic properties. Chem Soc Rev 2013, 42:2679-2724.
  • [18]Ratto F, Matteini P, Rossi F, Pini R: Size and shape control in the overgrowth of gold nanorods. J Nanopart Res 2010, 12:2029-2036.
  • [19]Li N, Zhao P, Astruc D: Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed Engl 2014, 53:1756-1789.
  • [20]Alkilany AM, Thompson LB, Boulos SP, Sisco P, Murphy CJ: Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 2012, 64:190-199.
  • [21]Zhang Z, Wang J, Chen C: Gold nanorods based platforms for light-mediated theranostics. Theranostics 2013, 3:223-238.
  • [22]Choi WI, Sahu A, Kim YH, Tae G: Photothermal cancer therapy and imaging based on gold nanorods. Ann Biomed Eng 2012, 40:534-546.
  • [23]Wang Y, Black KCL, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu SY, Li M, Kim P, Li ZY, Wang LV, Liu Y, Xia Y: Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 2013, 7:2068-2077.
  • [24]Jokerst JV, Cole AJ, Van de Sompel D, Gambhir SS: Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via raman imaging in living mice. ACS Nano 2012, 6:10366-10377.
  • [25]Kennedy LC, Bear AS, Young JK, Lewinski NA, Kim J, Foster AE, Drezek RA: T cells enhance gold nanoparticle delivery to tumors in vivo. Nanoscale Res Lett 2011, 6:283. BioMed Central Full Text
  • [26]Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC: Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 2009, 9:1909-1915.
  • [27]Von Maltzahn G, Park JH, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN: Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 2009, 69:3892-3900.
  • [28]Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y: PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 2006, 114:343-347.
  • [29]Rayavarapu RG, Petersen W, Hartsuiker L, Chin P, Janssen H, van Leeuwen FWB, Otto C, Manohar S, van Leeuwen TG: In vitro toxicity studies of polymer-coated gold nanorods. Nanotechnology 2010, 21:145101.
  • [30]Joshi PP, Yoon SJ, Hardin WG, Emelianov S, Sokolov KV: Conjugation of antibodies to gold nanorods through Fc portion: synthesis and molecular specific imaging. Bioconjug Chem 2013, 19:878-888.
  • [31]Lee E, Hong Y, Choi J, Haam S, Suh JS, Huh YM, Yang J: Highly selective CD44-specific gold nanorods for photothermal ablation of tumorigenic subpopulations generated in MCF7 mammospheres. Nanotechnology 2012, 23:465101.
  • [32]Charan S, Sanjiv K, Singh N, Chien FC, Chen YF, Nergui NN, Huang SH, Kuo CW, Lee TC, Chen P: Development of chitosan oligosaccharide-modified gold nanorods for in vivo targeted delivery and noninvasive imaging by NIR irradiation. Bioconjug Chem 2012, 23:2173-2182.
  • [33]Wang J, Sefah K, Altman MB, Chen T, You M, Zhao Z, Huang CZ, Tan W: Aptamer-conjugated nanorods for targeted photothermal therapy of prostate cancer stem cells. Chem Asian J 2013, 10:2417-2422.
  • [34]Wang J, Zhu G, You M, Song E, Shukoor MI, Zhang K, Altman MB, Chen Y, Zhu Z, Huang CZ, Tan W: Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 2012, 6:5070-5077.
  • [35]Yang X, Liu X, Liu Z, Pu F, Ren J, Qu X: Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv Mater 2012, 24:2890-2895.
  • [36]Heidari Z, Sariri R, Salouti M: Gold nanorods-bombesin conjugate as a potential targeted imaging agent for detection of breast cancer. J Photochem Photobiol B 2013, 130:40-46.
  • [37]Bartneck M, Ritz T, Keul HA, Wambach M, Bornemann J, Gbureck U, Ehling J, Lammers T, Heymann F, Gassler N, Lüdde T, Trautwein C, Groll J, Tacke F: Peptide-functionalized gold nanorods increase liver injury in hepatitis. ACS Nano 2012, 6:8767-8777.
  • [38]Wang J, Dong B, Chen B, Jiang Z, Song H: Selective photothermal therapy for breast cancer with targeting peptide modified gold nanorods. Dalton Trans 2012, 41:11134-11144.
  • [39]Yang X, Liu Z, Li Z, Pu F, Ren J, Qu X: Near-infrared-controlled, targeted hydrophobic drug-delivery system for synergistic cancer therapy. Chemistry 2013, 19:10388-10394.
  • [40]Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A: Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2007, 2:125-132.
  • [41]Tong L, Wei QS, Wei A, Cheng JX: Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 2009, 85:21-32.
  • [42]Lu W, Zhang GD, Zhang R, Flores LG, Huang Q, Gelovani JG, Li C: Tumor site-specific silencing of NF-kappa B p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res 2010, 70:3177-3188.
  • [43]Eghtedari M, Liopo AV, Copland JA, Oraevsky AA, Motamedi M: Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett 2009, 9:287-291.
  • [44]Huang XH, Peng XH, Wang YQ, Wang YX, Shin DM, El-Sayed MA, Nie SM: A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 2010, 4:5887-5896.
  • [45]Ungureanu C, Kroes R, Petersen W, Groothuis TAM, Ungureanu F, Janssen H, van Leeuwen FWB, Kooyman RPH, Manohar S, van Leeuwen TG: Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics. Nano Lett 2011, 11:1887-1894.
  • [46]Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, Karmen BA: Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992, 52:3396-3401.
  • [47]Saul JM, Annapragada AV, Bellamkonda RV: A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Rel 2006, 114:277-287.
  • [48]Ying X, Wen H, Lu WL, Du J, Guo J, Tian W, Men Y, Zhang Y, Li RJ, Yang TY, Shang DW, Lou JN, Zhang LR, Zhang Q: Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Rel 2010, 141:183-192.
  • [49]Kluza E, van der Schaft DWJ, Hautvast PAI, Mulder WJM, Mayo KH, Griffioen AW, Strijkers GJ, Nicolay K: Synergistic targeting of alpha(v)beta(3) integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis. Nano Lett 2010, 10:52-58.
  • [50]Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S: In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnology 2008, 26:83-90.
  • [51]Shah NB, Vercellotti GM, White JG, Fegan A, Wagner CR, Bischof JC: Blood–nanoparticle interactions and in vivo biodistribution: impact of surface PEG and ligand properties. Mol Pharmaceutics 2012, 9:2146-2155.
  • [52]Grabarek Z, Gergely J: Zero-length crosslinking procedure with the use of active esters. Anal Biochem 1990, 185:131-135.
  • [53]Das M, Mordoukhovski L, Kumacheva E: Sequestering gold nanorods by polymer microgels. Adv Mater 2008, 20:2371-2375.
  • [54]Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, McDonald JF, El-Sayed MA: Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 2008, 269:57-66.
  • [55]Choi WI, Kim JY, Kang C, Byeon CC, Kim YH, Tae G: Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 2011, 5:1995-2003.
  • [56]Bagley AF, Hill S, Rogers GS, Bhatia SN: Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano 2013, 7:8089-8097.
  • [57]Mercatelli R, Romano G, Ratto F, Matteini P, Centi S, Cialdai F, Monici M, Pini R, Fusi F: Quantitative measurement of scattering and extinction spectra of nanoparticles by darkfield microscopy. Appl Phys Lett 2011, 99:131113.
  • [58]Mercatelli R, Ratto F, Centi S, Soria S, Romano G, Matteini P, Quercioli F, Pini R, Fusi F: Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope. Nanoscale 2013, 5:9645.
  • [59]Tatini F, Ratto F, Centi S, Landini I, Nobili S, Witort E, Fusi F, Capaccioli S, Mini E, Pini R: Specific markers, micro-environmental anomalies and tropism: opportunities for gold nanorods targeting of tumors in laser-induced hyperthermia. Proc. SPIE 2014, 8955:895519.
  • [60]Ratto F, Witort E, Tatini F, Centi S, Lazzeri L, Carta F, Lulli M, Vullo D, Fusi F, Supuran CT, Scozzafava A, Capaccioli S, Pini R: Plasmonic particles that hit hypoxic cells.Adv Funct Mater 2014, doi:10.1002/adfm.201402118.
  • [61]Rayavarapu RG, Petersen W, Ungureanu C, Post JN, van Leeuwen TG, Manohar S: Synthesis and bioconjugation of gold nanoparticles as potential molecular probes for light-based imaging techniques. Int J Biomed Imag 2007, 2007:29817.
  • [62]Kim D, Jeong YY, Jon S: A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 2010, 4:3689-3696.
  • [63]Carpin LB, Bickford LR, Agollah G, Yu TK, Schiff R, Li Y, Drezek RA: Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells. Breast Cancer Res Treat 2011, 125:27-34.
  • [64]England CG, Priest T, Zhang G, Sun X, Patel DN, McNally LR, van Berkel V, Gobin AM, Frieboes HB: Enhanced penetration into 3D cell culture using two and three layered gold nanoparticles. Int J Nanomed 2013, 8:3603-3617.
  • [65]Yao L, Daniels J, Moshnikova A, Kuznetsov S, Ahmed A, Engelman DM, Reshetnyak YK, Andreev OA: pHLIP peptide targets nanogold particles to tumors. Proc Natl Acad Sci USA 2013, 110:465-470.
  • [66]Nikoobakht B, El-Sayed MA: Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 2003, 15:1957-1962.
  • [67]Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, Li L, Liang D, Li C: Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomater 2009, 30:1928-1936.
  • [68]Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P: Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 2005, 249:1870-1901.
  • [69]Ratto F, Matteini P, Cini A, Centi S, Rossi F, Fusi F, Pini R: CW laser-induced photothermal conversion and shape transformation of gold nanodogbones in hydrated chitosan films. J Nanopart Res 2011, 13:4337-4348.
  • [70]Matteini P, Ratto F, Rossi F, de Angelis M, Cavigli L, Pini R: Hybrid nanocomposite films for laser-activated tissue bonding. J Biophotonics 2012, 5:868-877.
  • [71]Etchegoin PG, Le Ru EC, Meyer M: An analytic model for the optical properties of gold. J Chem Phys 2006, 125:164705.
  文献评价指标  
  下载次数:17次 浏览次数:15次