期刊论文详细信息
Journal of Hematology & Oncology
Protein biomarkers distinguish between high- and low-risk pediatric acute lymphoblastic leukemia in a tissue specific manner
Fotini Tzortzatou-Stathopoulou1  George T Tsangaris3  Kalliopi Karamolegou2  Konstantinos Vougas3  George I Lambrou2  Maria Braoudaki2 
[1] First Department of Pediatrics, University of Athens Medical School, Choremeio Research Laboratory, Thivon & Levadias 11527 Goudi-Athens, Greece;First Department of Pediatrics, Choremeio Research Laboratory, University of Athens Medical School, Thivon & Levadias, Goudi-Athens 11527, Greece;Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
关键词: Two-dimensional gel electrophoresis;    Proteomics;    Mass spectrometry;    Childhood leukemia;   
Others  :  804479
DOI  :  10.1186/1756-8722-6-52
 received in 2013-03-19, accepted in 2013-07-04,  发布年份 2013
PDF
【 摘 要 】

The current study evaluated the differential expression detected in the proteomic profiles of low risk- and high risk- ALL pediatric patients to characterize candidate biomarkers related to diagnosis, prognosis and patient targeted therapy. Bone marrow and peripheral blood plasma and cell lysates samples were obtained from pediatric patients with low- (LR) and high-risk (HR) ALL at diagnosis. As controls, non-leukemic pediatric patients were studied. Cytogenetic analysis was carried out by G- banding and interphase fluorescent in situ hybridization. Differential proteomic analysis was performed using two-dimensional gel electrophoresis and protein identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The differential expression of certain proteins was confirmed by Western blot analysis. The obtained data revealed that CLUS, CERU, APOE, APOA4, APOA1, GELS, S10A9, AMBP, ACTB, CATA and AFAM proteins play a significant role in leukemia prognosis, potentially serving as distinctive biomarkers for leukemia aggressiveness, or as suppressor proteins in HR-ALL cases. In addition, vitronectin and plasminogen probably contributed to leukemogenesis, whilst bicaudal D-related protein 1 could afford a significant biomarker for pediatric ALL therapeutics.

【 授权许可】

   
2013 Braoudaki et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708062116540.pdf 1825KB PDF download
Figure 9. 106KB Image download
Figure 7. 98KB Image download
Figure 6. 176KB Image download
Figure 5. 85KB Image download
Figure 4. 123KB Image download
Figure 3. 130KB Image download
Figure 2. 55KB Image download
Figure 1. 54KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 9.

【 参考文献 】
  • [1]Jiang N, Kham SK, Koh GS, Suang Lim JY, Ariffin H, Chew FT, Yeoh AE: Identification of prognostic protein biomarkers in childhood acute lymphoblastic leukemia (ALL). J Proteomics 2011, 74:843-857.
  • [2]Lo Nigro L: Biology of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2013, 35:245-252.
  • [3]Carroll WL, Bhojwani D, Min DJ, Raetz E, Relling M, Davies S, Downing JR, Willman CL, Reed JC: Pediatric acute lymphoblastic leukemia. Hematol/Educ Prog Am Soc Hematol Am Soc Hematol 2003, 102-131.
  • [4]Pui CH, Relling MV, Campana D, Evans WE: Childhood acute lymphoblastic leukemia. Rev Clin Exp Hematol 2002, 6:161-180. discussion 200–162
  • [5]Katsibardi K, Moschovi MA, Braoudaki M, Papadhimitriou SI, Papathanasiou C, Tzortzatou-Stathopoulou F: Sequential monitoring of minimal residual disease in acute lymphoblastic leukemia: 7-year experience in a pediatric hematology/oncology unit. Leuk Lymphoma 2010, 51:846-852.
  • [6]Bhojwani D, Howard SC, Pui CH: High-risk childhood acute lymphoblastic leukemia. Clin Lymphoma Myeloma 2009, 9(Suppl 3):S222-S230.
  • [7]Teuffel O, Dettling M, Cario G, Stanulla M, Schrappe M, Buhlmann P, Niggli FK, Schafer BW: Gene expression profiles and risk stratification in childhood acute lymphoblastic leukemia. Haematologica 2004, 89:801-808.
  • [8]Accordi B, Espina V, Giordan M, VanMeter A, Milani G, Galla L, Ruzzene M, Sciro M, Trentin L, De Maria R, et al.: Functional protein network activation mapping reveals new potential molecular drug targets for poor prognosis pediatric BCP-ALL. PLoS One 2010, 5:e13552.
  • [9]Leclerc GM, Leclerc GJ, Fu G, Barredo JC: AMPK-induced activation of Akt by AICAR is mediated by IGF-1R dependent and independent mechanisms in acute lymphoblastic leukemia. J Mol Signal 2010, 5:15. BioMed Central Full Text
  • [10]Linger RM, DeRyckere D, Brandao L, Sawczyn KK, Jacobsen KM, Liang X, Keating AK, Graham DK: Mer receptor tyrosine kinase is a novel therapeutic target in pediatric B-cell acute lymphoblastic leukemia. Blood 2009, 114:2678-2687.
  • [11]Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE: Direct inhibition of the NOTCH transcription factor complex. Nature 2009, 462:182-188.
  • [12]Mullighan CG, Zhang J, Harvey RC, Collins-Underwood JR, Schulman BA, Phillips LA, Tasian SK, Loh ML, Su X, Liu W, et al.: JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Nat Acad Sci USA 2009, 106:9414-9418.
  • [13]Seshi B: Proteomics strategy based on liquid-phase IEF and 2-D DIGE: application to bone marrow mesenchymal progenitor cells. Proteomics 2007, 7:1984-1999.
  • [14]Saunders P, Cisterne A, Weiss J, Bradstock KF, Bendall LJ: The mammalian target of rapamycin inhibitor RAD001 (everolimus) synergizes with chemotherapeutic agents, ionizing radiation and proteasome inhibitors in pre-B acute lymphocytic leukemia. Haematologica 2011, 96:69-77.
  • [15]Lin S, Tian L, Shen H, Gu Y, Li JL, Chen Z, Sun X, James You M, Wu L: DDX5 is a positive regulator of oncogenic NOTCH1 signaling in T cell acute lymphoblastic leukemia. Oncogene 2012.
  • [16]Foss EJ, Radulovic D, Stirewalt DL, Radich J, Sala-Torra O, Pogosova-Agadjanyan EL, Hengel SM, Loeb KR, Deeg HJ, Meshinchi S, et al.: Proteomic classification of acute leukemias by alignment-based quantitation of LC-MS/MS data sets. J Proteome Res 2012, 11:5005-5010.
  • [17]Nersting J, Borst L, Schmiegelow K: Challenges in implementing individualized medicine illustrated by antimetabolite therapy of childhood acute lymphoblastic leukemia. Clin Proteomics 2011, 8:8. BioMed Central Full Text
  • [18]Cho WC: Proteomics and translational medicine: molecular biomarkers for cancer diagnosis, prognosis and prediction of therapy outcome. Expert Rev Proteomics 2011, 8:1-4.
  • [19]Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C: The morphological classification of acute lymphoblastic leukaemia: concordance among observers and clinical correlations. Brit J Haematol 1981, 47:553-561.
  • [20]Tzortzatou-Stathopoulou F, Moschovi MA, Papadopoulou AL, Barbounaki IG, Lambrou GI, Balafouta M, Syriopoulou V: Could intensified treatment in childhood acute lymphoblastic leukemia improve outcome independently of risk factors? Eur J Haematol 2005, 75:361-369.
  • [21]Braoudaki M, Tzortzatou-Stathopoulou F, Anagnostopoulos AK, Papathanassiou C, Vougas K, Karamolegou K, Tsangaris GT: Proteomic analysis of childhood de novo acute myeloid leukemia and myelodysplastic syndrome/AML: correlation to molecular and cytogenetic analyses. Amino Acids 2011, 40:943-951.
  • [22]Braoudaki M, Papathanassiou C, Katsibardi K, Tourkadoni N, Karamolegou K, Tzortzatou-Stathopoulou F: The frequency of NPM1 mutations in childhood acute myeloid leukemia. J Hematol Oncol 2010, 3:41. BioMed Central Full Text
  • [23]Tsangaris GT, Karamessinis P, Kolialexi A, Garbis SD, Antsaklis A, Mavrou A, Fountoulakis M: Proteomic analysis of amniotic fluid in pregnancies with Down syndrome. Proteomics 2006, 6:4410-4419.
  • [24]Kolialexi A, Mavrou A, Spyrou G, Tsangaris GT: Mass spectrometry-based proteomics in reproductive medicine. Mass Spectrom Rev 2008, 27:624-634.
  • [25]Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, et al.: STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 2009, 37:D412-416.
  • [26]Quackenbush J: Computational analysis of microarray data. Nature Rev 2001, 2:418-427.
  • [27]Grossmann S, Bauer S, Robinson PN, Vingron M: Improved detection of overrepresentation of Gene-Ontology annotations with parent child analysis. Bioinformatics (Oxford, England) 2007, 23:3024-3031.
  • [28]Bauer S, Grossmann S, Vingron M, Robinson PN: Ontologizer 2.0--a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics (Oxford, England) 2008, 24:1650-1651.
  • [29]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nature Gen 2000, 25:25-29.
  • [30]Zhang B, Schmoyer D, Kirov S, Snoddy J: GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics 2004, 5:16. BioMed Central Full Text
  • [31]Mlecnik B, Scheideler M, Hackl H, Hartler J, Sanchez-Cabo F, Trajanoski Z: PathwayExplorer: web service for visualizing high-throughput expression data on biological pathways. Nucleic Acids Res 2005, 33:W633-637.
  • [32]Brenner DE, Hawk E: Trials and tribulations of interrogating biomarkers to define efficacy of cancer risk reductive interventions. Cancer Prevent Res (Philadelphia, Pa) 2013, 6:71-73.
  • [33]Winston JS, Asch HL, Zhang PJ, Edge SB, Hyland A, Asch BB: Downregulation of gelsolin correlates with the progression to breast carcinoma. Breast Cancer Res Treatment 2001, 65:11-21.
  • [34]Li GH, Arora PD, Chen Y, McCulloch CA, Liu P: Multifunctional roles of gelsolin in health and diseases. Med Res Rev 2011, 32:999-1025.
  • [35]Ohnishi M, Matsumoto T, Nagashio R, Kageyama T, Utsuki S, Oka H, Okayasu I, Sato Y: Proteomics of tumor-specific proteins in cerebrospinal fluid of patients with astrocytoma: usefulness of gelsolin protein. Pathol Int 2009, 59:797-803.
  • [36]Hamm A, Veeck J, Bektas N, Wild PJ, Hartmann A, Heindrichs U, Kristiansen G, Werbowetski-Ogilvie T, Del Maestro R, Knuechel R, Dahl E: Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: a systematic expression analysis. BMC Cancer 2008, 8:25. BioMed Central Full Text
  • [37]Braoudaki M, Tsangaris GT, Karamolegou K, Anagnostopoulos AK, Prodromou N, Tzortzatou-Stathopoulou F: Proteomic profile of a therapy related acute myeloid leukemia following brain tumor. Leuk Lymphoma 2010, 51:2306-2309.
  • [38]Rizzi F, Bettuzzi S: Targeting clusterin in prostate cancer. J Physiol Pharmacol 2008, 59(Suppl 9):265-274.
  • [39]Shiota M, Zoubeidi A, Kumano M, Beraldi E, Naito S, Nelson CC, Sorensen PH, Gleave ME: Clusterin is a critical downstream mediator of stress-induced YB-1 transactivation in prostate cancer. Mol Cancer Res 2011, 9:1755-1766.
  • [40]Xie MJ, Motoo Y, Su SB, Mouri H, Ohtsubo K, Matsubara F, Sawabu N: Expression of clusterin in human pancreatic cancer. Pancreas 2002, 25:234-238.
  • [41]Mazzarelli P, Pucci S, Spagnoli LG: CLU and colon cancer. The dual face of CLU: from normal to malignant phenotype. Advances Cancer Res 2009, 105:45-61.
  • [42]Wei L, Xue T, Wang J, Chen B, Lei Y, Huang Y, Wang H, Xin X: Roles of clusterin in progression, chemoresistance and metastasis of human ovarian cancer. Int J Cancer 2009, 125:791-806.
  • [43]Redondo M, Rodrigo I, Alcaide J, Tellez T, Roldan MJ, Funez R, Diaz-Martin A, Rueda A, Jimenez E: Clusterin expression is associated with decreased disease-free survival of patients with colorectal carcinomas. Histopathol 2010, 56:932-936.
  • [44]Niu Z, Li X, Hu B, Li R, Wang L, Wu L, Wang X: Small interfering RNA targeted to secretory clusterin blocks tumor growth, motility, and invasion in breast cancer. Acta Biochim Biophys Sin 2012, 44:991-998.
  • [45]Cohen A, Wang E, Chisholm KA, Kostyleva R, O’Connor-McCourt M, Pinto DM: A mass spectrometry-based plasma protein panel targeting the tumor microenvironment in patients with breast cancer. J Proteomics 2013, 81:135-147.
  • [46]Andersen JD, Boylan KL, Xue FS, Anderson LB, Witthuhn BA, Markowski TW, Higgins L, Skubitz AP: Identification of candidate biomarkers in ovarian cancer serum by depletion of highly abundant proteins and differential in-gel electrophoresis. Electrophoresis 2010, 31:599-610.
  • [47]Byrne JC, Downes MR, O’Donoghue N, O’Keane C, O’Neill A, Fan Y, Fitzpatrick JM, Dunn M, Watson RW: 2D-DIGE as a strategy to identify serum markers for the progression of prostate cancer. J Proteome Res 2009, 8:942-957.
  • [48]Dieplinger H, Ankerst DP, Burges A, Lenhard M, Lingenhel A, Fineder L, Buchner H, Stieber P: Afamin and apolipoprotein A-IV: novel protein markers for ovarian cancer. Cancer Epidemiol Biomarkers Prev 2009, 18:1127-1133.
  • [49]Jackson D, Craven RA, Hutson RC, Graze I, Lueth P, Tonge RP, Hartley JL, Nickson JA, Rayner SJ, Johnston C, et al.: Proteomic profiling identifies afamin as a potential biomarker for ovarian cancer. Clin Cancer Res 2007, 13:7370-7379.
  • [50]Abdullah-Soheimi SS, Lim BK, Hashim OH, Shuib AS: Patients with ovarian carcinoma excrete different altered levels of urine CD59, kininogen-1 and fragments of inter-alpha-trypsin inhibitor heavy chain H4 and albumin. Proteome Sci 2010, 8:58. BioMed Central Full Text
  • [51]Florova G, Karandashova S, Declerck PJ, Idell S, Komissarov AA: Remarkable stabilization of plasminogen activator inhibitor 1 in a “molecular sandwich” complex. Biochem 2013.
  • [52]Tzortzatou-Stathopoulou F: Infiltration and metastasis in cancer. Ann Clin Pediatr 2009, 56:48-65.
  • [53]Fiscella K, Winters P, Tancredi D, Hendren S, Franks P: Racial disparity in death from colorectal cancer: does vitamin D deficiency contribute? Cancer 117:1061-1069.
  • [54]Napoli N, Vattikuti S, Ma C, Rastelli A, Rayani A, Donepudi R, Asadfard M, Yarramaneni J, Ellis M, Armamento-Villareal R: High prevalence of low vitamin D and musculoskeletal complaints in women with breast cancer. Breast J 2010, 16:609-616.
  • [55]Toner CD, Davis CD, Milner JA: The vitamin D and cancer conundrum: aiming at a moving target. J Am Dietetic Assoc 2010, 110:1492-1500.
  • [56]Trump DL, Deeb KK, Johnson CS: Vitamin D: considerations in the continued development as an agent for cancer prevention and therapy. Cancer J (Sudbury, Mass) 2010, 16:1-9.
  • [57]Lopes N, Paredes J, Costa JL, Ylstra B, Schmitt F: Vitamin D and the mammary gland: a review on its role in normal development and breast cancer. Breast Cancer Res 2012, 14:211. BioMed Central Full Text
  • [58]Lopez-Pedrera C, Villalba JM, Siendones E, Barbarroja N, Gomez-Diaz C, Rodriguez-Ariza A, Buendia P, Torres A, Velasco F: Proteomic analysis of acute myeloid leukemia: Identification of potential early biomarkers and therapeutic targets. Proteomics 2006, 6(Suppl 1):S293-299.
  • [59]el Bouhtoury F, Keller JM, Colin S, Parache RM, Dauca M: Peroxisomal enzymes in normal and tumoral human breast. J Pathol 1992, 166:27-35.
  • [60]Kahlos K, Soini Y, Sormunen R, Kaarteenaho-Wiik R, Paakko P, Linnainmaa K, Kinnula VL: Expression and prognostic significance of catalase in malignant mesothelioma. Cancer 2001, 91:1349-1357.
  • [61]Haskins WE, Eedala S, Jadhav YL, Labhan MS, Pericherla VC, Perlman EJ: Insights on neoplastic stem cells from gel-based proteomics of childhood germ cell tumors. Pediatr Blood Cancer 2012, 58:722-728.
  • [62]Sawada N, Iwasaki M, Inoue M, Sasazuki S, Yamaji T, Shimazu T, Tsugane S: Plasma testosterone and sex hormone-binding globulin concentrations and the risk of prostate cancer among Japanese men: a nested case–control study. Cancer Sci 2010, 101:2652-2657.
  • [63]Trojanowicz B, Sekulla C, Lorenz K, Kohrle J, Finke R, Dralle H, Hoang-Vu C: Proteomic approach reveals novel targets for retinoic acid-mediated therapy of thyroid carcinoma. Mol Cell Endocrinol 2010, 325:110-117.
  • [64]Zhang C, Saunders AJ: An emerging role for Ubiquilin 1 in regulating protein quality control system and in disease pathogenesis. Discov Med 2009, 8:18-22.
  • [65]Claussen M, Suter B: BicD-dependent localization processes: from Drosophilia development to human cell biology. Ann Anat 2005, 187:539-553.
  • [66]Swift S, Xu J, Trivedi V, Austin KM, Tressel SL, Zhang L, Covic L, Kuliopulos A: A novel protease-activated receptor-1 interactor, Bicaudal D1, regulates G protein signaling and internalization. J Biol Chem 2010, 285:11402-11410.
  • [67]Mangino M, Brouilette S, Braund P, Tirmizi N, Vasa-Nicotera M, Thompson JR, Samani NJ: A regulatory SNP of the BICD1 gene contributes to telomere length variation in humans. Human Mol Gen 2008, 17:2518-2523.
  • [68]Vlahou A: Network views for personalized medicine. Proteomics Clin Appl 2013, 7:384-387.
  • [69]Lambrou GI, Papadimitriou L, Chrousos GP, Vlahopoulos SA: Glucocorticoid and proteasome inhibitor impact on the leukemic lymphoblast: multiple, diverse signals converging on a few key downstream regulators. Mol Cell Endocrinol 2012, 351:142-151.
  • [70]Uda S, Accossu S, Spolitu S, Collu M, Angius F, Sanna F, Banni S, Vacca C, Murru E, Mulas C, et al.: A lipoprotein source of cholesteryl esters is essential for proliferation of CEM-CCRF lymphoblastic cell line. Tumour Biol 2012, 33:443-453.
  • [71]Scribano D, Baroni S, Pagano L, Zuppi C, Leone G, Giardina B: Return to normal values of lipid pattern after effective chemotherapy in acute lymphoblastic leukemia. Haematologica 1996, 81:343-345.
  文献评价指标  
  下载次数:31次 浏览次数:26次