Journal of Clinical Bioinformatics | |
MicroRNAs: an emerging science in cancer epigenetics | |
Trygve O Tollefsbol2  Tabitha M Hardy1  Gregory W Peek1  Rishabh Kala1  | |
[1] Department of Biology, University of Alabama Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA;Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA | |
关键词: Bioinformatics software; Cancer epigenetics; Diet; Biogenesis; miRNA; | |
Others : 804092 DOI : 10.1186/2043-9113-3-6 |
|
received in 2012-12-30, accepted in 2013-02-04, 发布年份 2013 | |
【 摘 要 】
MicroRNAs (miRNAs) are remarkable molecules that appear to have a fundamental role in the biology of the cell. They constitute a class of non-protein encoding RNA molecules which have now emerged as key players in regulating the activity of mRNA. miRNAs are small RNAmolecules around 22 nucleotides in length, which affect the activity of specific mRNA, directly degrading it and/or preventing its translation into protein. The science of miRNAs holds them as candidate biomarkers for the early detection and management of cancer. There is also considerable excitement for the use of miRNAs as a novel class of therapeutic targets and as a new class of therapeutic agents for the treatment of cancers. From a clinical perspective, miRNAs can induce a number of effects and may have a diverse application in biomedical research. This review highlights the general mode of action of miRNAs, their biogenesis, the effect of diet on miRNA expression and the impact of miRNAs on cancer epigenetics and drug resistance in various cancers. Further we also provide emphasis on bioinformatics software which can be used to determine potential targets of miRNAs.
【 授权许可】
2013 Kala et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140708053533278.pdf | 355KB | download | |
Figure 1. | 83KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Grady WM, Tewari M: The next thing in prognostic molecular markers: microRNA signatures of cancer. Gut 2010, 59(6):706-708.
- [2]Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004, 23(20):4051-60.
- [3]Filippov V, Solovyev V, Filippova M, Gill SS: A novel type of RNase III family proteins in eukaryotes. Gene 2000, 245(1):213-21.
- [4]Snyder LL, Ahmed I, Steel LF: RNA polymerase III can drive polycistronic expression of functional interfering RNAs designed to resemble microRNAs. Nucleic Acids Res 2009, 37(19):e127.
- [5]Kim VN, Han J, Siomi MC: Review Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009, 10(2):126-39.
- [6]Bartel DP: Review MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-97.
- [7]Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466(7308):835-40.
- [8]Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455(7209):58-63.
- [9]Grimson A, Farh KKH, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007, 27:91-105.
- [10]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120:15-20.
- [11]Lin RJ, Lin YC, Chen J, Kuo HH, Chen YY, Diccianni MB, London WB, Chang CH, Yu AL: MicroRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res 2010, 70(20):7841-50.
- [12]Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: MiRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34:D140-D144.
- [13]Kozomara A, Griffiths-Jones S: MiRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39:D152-D157.
- [14]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
- [15]Betel D, Wilson M, Gabow A, Marks DS, Sander C: The microRNA.org resource: targets and expression. Nucleic Acids Res 2008, 36:D149-D153.
- [16]Sethupathy P, Corda B, Hatzigeorgiou AG: TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 2006, 12:192-197.
- [17]Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: MiRBase: tools for microRNA genomics. Nucleic Acids Res 2008, 36:D154-D158.
- [18]John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human microRNA targets. PLoS Biol 2004, 2:e363.
- [19]Hubbard TJP, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Lawson D, Longden I: Ensembl 2009. Nucleic Acids Res 2009, 37:D690-D697.
- [20]Betel D, Koppal A, Agius P, Sander C, Leslie C: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 2010, 11:R90. BioMed Central Full Text
- [21]Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y: miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 2009, 37:D98-D104.
- [22]Wang J, Lu M, Qiu C, Cui Q: TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res 2010, 38:D119-D122.
- [23]Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, Tsai W-T, Chen G-Z, Lee C-J, Chiu C-M, Chien C-H, Wu M-C, Huang C-Y, Tsou A-P, Huang H-D: MiRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 2011, 39:D163-D169.
- [24]Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA: Characterization of MicroRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 2007, 67:2456-2468.
- [25]Baker EK, Johnstone RW, Zalcberg JR, El-Osta A: Epigenetic changes to the MDR1 locus in response to chemotherapeutic drugs. Oncogene 2005, 24(54):8061-75.
- [26]Roberti A, La Sala D, Cinti C: Multiple genetic and epigenetic interacting mechanisms contribute to clonally selection of drug-resistant tumors: current views and new therapeutic prospective. J Cell Physiol 2006, 3:571-81.
- [27]Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, Coppola D, Cheng JQ: MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 2008, 283(45):31079-86.
- [28]Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144(5):646-74.
- [29]Pogribny IP, Beland FA: DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci 2009, 66(14):2249-61.
- [30]Guil S, Esteller M: DNA methylomes, histone codes and miRNAs: trying it all together. Int J Biochem Cell Biol 2009, 41(1):87-95.
- [31]Saito Y, Jones PA: Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 2006, 19:2220-2.
- [32]Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ, Gallagher WM, Eccles SA, Croce CM, Esteller M: A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 2008, 105(36):13556-61.
- [33]Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM: MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Eur J Gynaecol Oncol 2009, 6:616-21.
- [34]Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C, Burow ME, Ivan M, Croce CM, Nephew KP: MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene 2011, 30(9):1082-97.
- [35]Sachdeva M, Wu H, Ru P, Hwang L, Trieu V, Mo YY: MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene 2011, 30(7):822-31.
- [36]He L, He X, Lim LP, Stanchina E, Xuan Z, Liang Y: A microRNA component of the p53 tumour suppressor network. Nature 2007, 447(7148):1130-4.
- [37]Xi Y, Shalgi R, Fodstad O, Pilpel Y, Ju J: Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res 2006, 12(7):2014-24.
- [38]Shin S, Cha HJ, Lee EM, Jung JH, Lee SJ, Park IC, Jin YW, An S: MicroRNAs are significantly influenced by p53 and radiation in HCT116 human colon carcinoma cells. Int J Oncol 2009, 34(6):1645-52.
- [39]Munekazu Y, Marcella F, Lowenstein CJ: MiR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 2008, 105(36):13421-13426.
- [40]Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A, Matsunaga J, Takahashi R-U, Takata T, Shimamoto A, Ochiya T, Tahara H: miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 2011, 193(2):409-424.
- [41]Akao Y, Noguchi S, Iio A, Kojima K, Takagi T, Naoe T: Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett 2011, 300(2):197-204.
- [42]Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, Zhou Q: miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem 2011, 286(29):25992-6002.
- [43]Strum JC, Johnson JH, Ward J, Xie H, Feild J, Hester A, Alford A, Waters KM: MicroRNA 132 Regulates Nutritional Stress-Induced Chemokine Production through Repression of SirT1. Mol Endocrinol 2009, 23:11876-1884.
- [44]Kheir TB, Futoma-Kazmierczak E, Jacobsen A, Krogh A, Bardram L, Hother C, Grønbæk K, Federspiel B, Lund AH, Friis-Hansen L: miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol Cancer 2011, 10:29.
- [45]Saunders LR, Sharma AD, Tawney J, Nakagawa M, Okita K, Yamanaka S, Willenbring H, Verdin E: miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY) 2010, 2(7):415-431.
- [46]Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA: Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006, 9(6):435-43.
- [47]Landis-Piwowar KR, Huo C, Chen D, Milacic V, Shi G, Chan TH, Dou QP: A novel prodrug of the green tea polyphenol (−)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res 2007, 67(9):4303-10.
- [48]Li Y, Liu L, Tollefsbol TO: Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. FASEB J 2010, 24(5):1442-53.
- [49]Paluszczak J, Krajka-Kuźniak V, Baer-Dubowska W: The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett 2010, 192(2):119-25.
- [50]Parker L, Taylor D, Kesterson J, Metzinger D, Gercel-Taylor C: Modulation of microRNA associated with ovarian cancer cells by genistein. Eur J Gynaecol Oncol 2009, 30:616-621.
- [51]Sun Q, Cong R, Yan H, Gu H, Zeng Y, Liu N, Chen J, Wang B: Genistein inhibits growth of human uveal melanoma cells and affects microRNA-27a and target gene expression. Oncol Rep 2009, 22:563-567.
- [52]Li Y, VandenBoom T, Kong D, Wang Z, Ali S, Philip P, Sarkar F: Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-tomesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 2009, 69:6704-6712.
- [53]Yang J, Cao Y, Sun J, Zhang Y: Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol 2010, 27:1114-8.
- [54]Meeran SM, Ahmed A, Tollefsbol TO: Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics 2010, 1(3–4):101-116.
- [55]Hardy TM, Tollefsbol TO: Epigenetic diet: impact on the epigenome and cancer. Epigenomics 2011, 3(4):503-518.