期刊论文详细信息
Journal of Neuroinflammation
Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis
Claude C.A. Bernard1  Graham Jenkin4  Euan M. Wallace4  Rebecca Lim4  Christopher Siatskas2  Leon Moussa1  Guizhi Sun1  Natalie L. Payne1  Courtney A. McDonald3 
[1] Australian Regenerative Medicine Institute, Monash University, Clayton 3800, Australia;Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, VIC, Australia;The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton 3800, VIC, Australia;Department of Obstetrics and Gynaecology, Monash University, Clayton 3800, VIC, Australia
关键词: Stem cells;    Demyelination;    Neurodegeneration;    Immunoregulation;    Multiple sclerosis;    Amnion epithelial cells;   
Others  :  1221964
DOI  :  10.1186/s12974-015-0322-8
 received in 2014-12-17, accepted in 2015-05-14,  发布年份 2015
PDF
【 摘 要 】

Background

Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). In recent years, it has been found that cells such as human amnion epithelial cells (hAECs) have the ability to modulate immune responses in vitro and in vivo and can differentiate into multiple cell lineages. Accordingly, we investigated the immunoregulatory effects of hAECs as a potential therapy in an MS-like disease, EAE (experimental autoimmune encephalomyelitis), in mice.

Methods

Using flow cytometry, the phenotypic profile of hAECs from different donors was assessed. The immunomodulatory properties of hAECs were examined in vitro using antigen-specific and one-way mixed lymphocyte proliferation assays. The therapeutic efficacy of hAECs was examined using a relapsing-remitting model of EAE in NOD/Lt mice. T cell responsiveness, cytokine secretion, T regulatory, and T helper cell phenotype were determined in the peripheral lymphoid organs and CNS of these animals.

Results

In vitro, hAECs suppressed both specific and non-specific T cell proliferation, decreased pro-inflammatory cytokine production, and inhibited the activation of stimulated T cells. Furthermore, T cells retained their naïve phenotype when co-cultured with hAECs. In vivo studies revealed that hAECs not only suppressed the development of EAE but also prevented disease relapse in these mice. T cell responses and production of the pro-inflammatory cytokine interleukin (IL)-17A were reduced in hAEC-treated mice, and this was coupled with a significant increase in the number of peripheral T regulatory cells and naïve CD4+ T cells. Furthermore, increased proportions of Th2 cells in the peripheral lymphoid organs and within the CNS were observed.

Conclusion

The therapeutic effect of hAECs is in part mediated by inducing an anti-inflammatory response within the CNS, demonstrating that hAECs hold promise for the treatment of autoimmune diseases like MS.

【 授权许可】

   
2015 McDonald et al.

【 预 览 】
附件列表
Files Size Format View
20150804130622422.pdf 2932KB PDF download
Fig. 6. 59KB Image download
Fig. 5. 63KB Image download
Fig. 4. 29KB Image download
Fig. 3. 116KB Image download
Fig. 2. 56KB Image download
Fig. 1. 72KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Ewing C, Bernard CCA: Insights into the aetiology and pathogenesis of multiple sclerosis. Immunol Cell Biol. 1998, 76:47-54.
  • [2]Lassmann H: Multiple sclerosis: is there neurodegeneration independent from inflammation? J Neurol Sci 2007, 259(1–2):3-6.
  • [3]Payne N, Siatskas C, Bernard CC: The promise of stem cell and regenerative therapies for multiple sclerosis. J Autoimmun 2008, 31(3):288-94.
  • [4]Kieseier BC, Wiendl H, Leussink VI, Stuve O: Immunomodulatory treatment strategies in multiple sclerosis. J Neurol. 2008, 255(Suppl 6):15-21.
  • [5]Li H, Niederkorn JY, Neelam S, Mayhew E, Word RA, McCulley JP, et al.: Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 2005, 46(3):900-7.
  • [6]Whittle WL, Gibb W, Challis JR: The characterization of human amnion epithelial and mesenchymal cells: the cellular expression, activity and glucocorticoid regulation of prostaglandin output. Placenta 2000, 21(4):394-401.
  • [7]Sakuragawa N, Kakinuma K, Kikuchi A, Okano H, Uchida S, Kamo I, et al.: Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells. J Neurosci Res 2004, 78(2):208-14.
  • [8]Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC: Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol 2007, 75(2):91-6.
  • [9]Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U: Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 2007, 77(3):577-88.
  • [10]Toda A, Okabe M, Yoshida T, Nikaido T: The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 2007, 105(3):215-28.
  • [11]Diaz-Prado S, Muinos-Lopez E, Hermida-Gomez T, Rendal-Vazquez ME, Fuentes-Boquete I, de Toro FJ, et al.: Multilineage differentiation potential of cells isolated from the human amniotic membrane. J Cell Biochem 2010, 111(4):846-57.
  • [12]Banas RA, Trumpower C, Bentlejewski C, Marshall V, Sing G, Zeevi A: Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. Hum Immunol 2008, 69(6):321-8.
  • [13]Murphy S, Rosli S, Acharya R, Mathias L, Lim R, Wallace E, et al.: Amnion epithelial cell isolation and characterization for clinical use. Curr Protoc Stem Cell Biol 2010, Chapter 1:Unit 1E 6.
  • [14]Miki T, Lehmann T, Cai H, Stolz DB, Strom SC: Stem cell characteristics of amniotic epithelial cells. Stem Cells 2005, 23(10):1549-59.
  • [15]Tan JL, Chan ST, Wallace EM, Lim R: Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transplant 2014, 23(3):319-28.
  • [16]Wolbank S, Peterbauer A, Fahrner M, Hennerbichler S, van Griensven M, Stadler G, et al.: Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng 2007, 13(6):1173-83.
  • [17]McDonald C, Siatskas C, Bernard CCA: The emergence of amnion epithelial stem cells for the treatment of multiple sclerosis. Inflamm Regen 2011, 31(3):256-71.
  • [18]Liu YH, Vaghjiani V, Tee JY, To K, Cui P, Oh DY, et al.: Amniotic epithelial cells from the human placenta potently suppress a mouse model of multiple sclerosis. PLoS One 2012, 7(4):e35758.
  • [19]Moodley Y, Illancheran S, Samuel C, Vaghijani V, Atienza D, Williams ED, et al.: Human amnion epithelial cell transplantation abrogates lung fibrosis and augments repair. Am J Respir Crit Care Med 2010, 182(5):643-51.
  • [20]Yawno T, Schuilwerve J, Moss TJ, Vosdoganes P, Westover AJ, Afandi E, et al.: Human amnion epithelial cells reduce fetal brain injury in response to intrauterine inflammation. Dev Neurosci 2013, 35(2-3):272-282.
  • [21]Kudriashov AF, Artarian AA, Putsillo MV: Use of amnion to repair a dural defect. Zh Vopr Neirokhir Im N N Burdenko. 1981, 5:37-40.
  • [22]Mostaque AK, Abdur Rahman KB: Comparisons of the effects of biological membrane (amnion) and silver sulfadiazine in the management of burn wounds in children. J Burn Care Res 2011, 32(2):200-209.
  • [23]Bujang-Safawi E, Halim AS, Khoo TL, Dorai AA: Dried irradiated human amniotic membrane as a biological dressing for facial burns–a 7-year case series. Burns 2010, 36(6):876-82.
  • [24]Muraine M, Descargues G, Franck O, Villeroy F, Toubeau D, Menguy E, et al.: Amniotic membrane graft in ocular surface disease. Prospective study with 31 cases. J Fr Ophtalmol 2001, 24(8):798-812.
  • [25]Zemba M, Andrei S, Cucu B, Bratulescu M, Stinghe A, Bobeico V, et al.: Amniotic membrane transplantation in palliative treatment of bullous keratopathy. Oftalmologia 2006, 50(4):51-3.
  • [26]Motolese I, Mazzera L, Frezzotti P, Motolese PA, Motolese E: Use of amniotic membrane transplantation in isolated conjunctival Bowen disease: a case report. Eur J Ophthalmol 2010, 20(3):604-7.
  • [27]Altan-Yaycioglu R, Akova YA, Oto S: Amniotic membrane transplantation for treatment of symblepharon in a patient with recessive dystrophic epidermolysis bullosa. Cornea 2006, 25(8):971-3.
  • [28]Payne NL, Sun G, Herszfeld D, Tat-Goh PA, Verma PJ, Parkington HC, et al.: Comparative study on the therapeutic potential of neurally differentiated stem cells in a mouse model of multiple sclerosis. PLoS One 2012, 7(4):e35093.
  • [29]Payne NL, Sun G, McDonald C, Layton D, Moussa L, Emerson-Webber A, et al.: Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination. Cell Transplant 2013, 22(8):1409-25.
  • [30]Short MA, Campanale N, Litwak S, Bernard CC: Quantitative and phenotypic analysis of bone marrow-derived cells in the intact and inflamed central nervous system. Cell Adh Migr 2011, 5(5):373-81.
  • [31]Parolini O, Alviano F, Bagnara GP, Bilic G, Buuhring HJ, Evangelista M, et al.: Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 2008, 26(2):300-11.
  • [32]Lim R, Chan ST, Tan JL, Mockler JC, Murphy SV, Wallace EM: Preterm human amnion epithelial cells have limited reparative potential. Placenta 2013, 34(6):486-92.
  • [33]Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al.: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8(4):315-7.
  • [34]Pratama G, Vaghjiani V, Tee JY, Liu YH, Chan J, Tan C, et al.: Changes in culture expanded human amniotic epithelial cells: implications for potential therapeutic applications. PLoS One 2011, 6(11):e26136.
  • [35]Stadler G, Hennerbichler S, Lindenmair A, Peterbauer A, Hofer K, van Griensven M, et al.: Phenotypic shift of human amniotic epithelial cells in culture is associated with reduced osteogenic differentiation in vitro. Cytotherapy 2008, 10(7):743-52.
  • [36]McQualter JL, Bernard CCA: Multiple sclerosis: a battle between destruction and repair. J Neurochem 2007, 100(2):295-306.
  • [37]Hori J, Wang M, Kamiya K, Takahashi H, Sakuragawa N: Immunological characteristics of amniotic epithelium. Cornea 2006, 25(10 Suppl 1):S53-8.
  • [38]Houlihan JM, Biro PA, Harper HM, Jenkinson HJ, Holmes CH: The human amnion is a site of MHC class Ib expression: evidence for the expression of HLA-E and HLA-G. J Immunol 1995, 154(11):5665-74.
  • [39]Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R: A class I antigen, HLA-G, expressed in human trophoblasts. Science 1990, 248(4952):220-3.
  • [40]Lovett-Racke AE, Trotter JL, Lauber J, Perrin PJ, June CH, Racke MK: Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients. A marker of activated/memory T cells. J Clin Invest 1998, 101(4):725-30.
  • [41]Guan H, Nagarkatti PS, Nagarkatti M: CD44 Reciprocally regulates the differentiation of encephalitogenic Th1/Th17 and Th2/regulatory T cells through epigenetic modulation involving DNA methylation of cytokine gene promoters, thereby controlling the development of experimental autoimmune encephalomyelitis. J Immunol 2011, 186(12):6955-64.
  • [42]Brocke S, Piercy C, Steinman L, Weissman IL, Veromaa T: Antibodies to CD44 and integrin alpha4, but not L-selectin, prevent central nervous system inflammation and experimental encephalomyelitis by blocking secondary leukocyte recruitment. Proc Natl Acad Sci U S A 1999, 96(12):6896-901.
  • [43]Williams JL, Kithcart AP, Smith KM, Shawler T, Cox GM, Whitacre CC: Memory cells specific for myelin oligodendrocyte glycoprotein (MOG) govern the transfer of experimental autoimmune encephalomyelitis. J Neuroimmunol 2011, 234(1–2):84-92.
  • [44]Slavin AJ, Johns TG, Orain JM, Bernard CC: Regulation of myelin oligodendrocyte glycoprotein in different species throughout development. Dev Neurosci 1997, 19(1):69-78.
  • [45]Khoury SJ, Hancock WW, Weiner HL: Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med 1992, 176(5):1355-64.
  • [46]Racke MK, Bonomo A, Scott DE, Cannella B, Levine A, Raine CS, et al.: Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med 1994, 180(5):1961-6.
  • [47]Kohm AP, Carpentier PA, Anger HA, Miller SD: Cutting edge: CD4 + CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 2002, 169(9):4712-6.
  • [48]Tan JL, Chan ST, Lo CY, Deane JA, McDonald CA, Bernard CC, et al.: Amnion cell mediated immune modulation following bleomycin challenge: controlling the regulatory T cell response. Stem Cell Res Ther 2015, 6(1):8.
  • [49]Pianta S, Bonassi-Signoroni P, Muradore I, Rodrigues MF, Rossi D, Silini A, et al. Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev. 2014; doi:10.1007/s12015-014-9558-4.
  • [50]Parolini O, Souza-Moreira L, O’Valle F, Magatti M, Hernandez-Cortes P, Gonzalez-Rey E, et al.: Therapeutic effect of human amniotic membrane-derived cells on experimental arthritis and other inflammatory disorders. Arthritis Rheumatol 2014, 66(2):327-39.
  • [51]Furlan R, Poliani PL, Galbiati F, Bergami A, Grimaldi LM, Comi G, et al.: Central nervous system delivery of interleukin 4 by a nonreplicative herpes simplex type 1 viral vector ameliorates autoimmune demyelination. Hum Gene Ther 1998, 9(17):2605-17.
  • [52]Butti E, Bergami A, Recchia A, Brambilla E, Del Carro U, Amadio S, et al.: IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis. Gene Ther 2008, 15(7):504-15.
  • [53]Lisak RP, Nedelkoska L, Studzinski D, Bealmear B, Xu W, Benjamins JA: Cytokines regulate neuronal gene expression: differential effects of Th1, Th2 and monocyte/macrophage cytokines. J Neuroimmunol 2011, 238(1–2):19-33.
  • [54]Razmkhah M, Jaberipour M, Erfani N, Habibagahi M, Talei AR, Ghaderi A: Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-beta1 and upregulate expression of regulatory molecules on T cells: do they protect breast cancer cells from the immune response? Cell Immunol 2011, 266(2):116-22.
  • [55]Komiya T, Sugiyama T, Takeda K, Watanabe N, Imai M, Kokubo M, et al.: Suppressive effects of a novel CC chemokine receptor 4 antagonist on Th2 cell trafficking in ligand- and antigen-induced mouse models. Eur J Pharmacol 2013, 720(1–3):335-43.
  • [56]Wang X, Kimbrel EA, Ijichi K, Paul D, Lazorchak AS, Chu J, et al.: Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Reports 2014, 3(1):115-30.
  • [57]Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al.: Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009, 5(1):54-63.
  • [58]Mathias LJ, Khong SM, Spyroglou L, Payne NL, Siatskas C, Thorburn AN, et al.: Alveolar macrophages are critical for the inhibition of allergic asthma by mesenchymal stromal cells. J Immunol 2013, 191(12):5914-24.
  • [59]Chen L, Coleman R, Leang R, Tran H, Kopf A, Walsh CM, et al.: Human neural precursor cells promote neurologic recovery in a viral model of multiple sclerosis. Stem Cell Reports 2014, 2(6):825-37.
  文献评价指标  
  下载次数:0次 浏览次数:5次