Journal of Translational Medicine | |
Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis | |
Dao Wen Wang2  Chen Chen1  Yan Wang2  Sandip Chaugai2  Huaping Li2  Chunxia Zhao2  Guangwen Long2  Feng Wang2  | |
[1] Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, PR China;The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China | |
关键词: Circulating miRNA; CHD; Biomarker; | |
Others : 826412 DOI : 10.1186/1479-5876-11-222 |
|
received in 2013-07-17, accepted in 2013-09-18, 发布年份 2013 | |
【 摘 要 】
Background
Previous study demonstrated that miR-133a was released into blood from injured myocardium in cardiovascular diseases. However, the dynamic change of circulating miR-133a level in the early phase of acute myocardial infarction (AMI) and the correlation between miR-133a and severity of coronary stenosis in coronary heart disease (CHD) patients are not clear.
Methods and results
Three different cohorts (including 13 AMI patients, 176 angina pectoris patients and 127 control subjects) were enrolled to investigate the expression levels of circulating miR-133a in patients with myocardial ischemia and also the relationship between plasma miR-133a and severity of coronary stenosis. Plasma miR-133a levels of participants were examined by real-time quantitative PCR. Simultaneously, plasma cardiac troponin I (cTnI) concentrations were measured by ELISA assays. The results showed that circulating miR-133a level was significantly increased in AMI patients in time-dependent manner, and achieved a 72.1 fold peak at 21.6 ± 4.5 hours after the onset of AMI symptoms and exhibited a similar trend to plasma cTnI level. We also found that plasma miR-133a levels were higher in CHD patients than control group. Importantly, the levels of circulating miR-133a positively correlated with the severities of the coronary artery stenosis. Receiver operating characteristic (ROC) analysis revealed that circulating miR-133a had considerable diagnostic accuracy for CHD with an AUC of 0.918 (95% confidence interval 0.877-0.960).
Conclusions
Circulating miR-133a may be a new biomarker for AMI and as a potential diagnostic tool. And increased miR-133a level may be used to predict both the presence and severity of coronary lesions in CHD patients.
【 授权许可】
2013 Wang et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140713094904810.pdf | 1505KB | download | |
Figure 5. | 55KB | Image | download |
Figure 4. | 70KB | Image | download |
Figure 3. | 83KB | Image | download |
Figure 2. | 64KB | Image | download |
Figure 1. | 88KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]White HD, Chew DP: Acute myocardial infarction. Lancet 2008, 372:570-584.
- [2]Jaffe AS, Ravkilde J, Roberts R, Naslund U, Apple FS, Galvani M, Katus H: It’s time for a change to a troponin standard. Circulation 2000, 102:1216-1220.
- [3]Abbas NA, John RI, Webb MC, Kempson ME, Potter AN, Price CP, Vickery S, Lamb EJ: Cardiac troponins and renal function in nondialysis patients with chronic kidney disease. Clin Chem 2005, 51:2059-2066.
- [4]Finsterer J, Stollberger C, Krugluger W: Cardiac and noncardiac, particularly neuromuscular, disease with troponin-T positivity. Neth J Med 2007, 65:289-295.
- [5]Giannitsis E, Katus HA: Cardiac troponin level elevations not related to acute coronary syndromes. Nat Rev Cardiol 2013. 10.1038/nrcardio.2013.129
- [6]Rosjo H, Varpula M, Hagve TA, Karlsson S, Ruokonen E, Pettila V, Omland T, Group FS: Circulating high sensitivity troponin T in severe sepsis and septic shock: distribution, associated factors, and relation to outcome. Intensive Care Med 2011, 37:77-85.
- [7]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
- [8]van Rooij E, Olson EN: MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 2007, 117:2369-2376.
- [9]Croce CM: Oncogenes and cancer. N Engl J Med 2008, 358:502-511.
- [10]van Rooij E, Marshall WS, Olson EN: Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res 2008, 103:919-928.
- [11]Kajimoto K, Naraba H, Iwai N: MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA 2006, 12:1626-1632.
- [12]Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, et al.: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008, 105:10513-10518.
- [13]Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008, 10:1470-1476.
- [14]Chim SS, Shing TK, Hung EC, Leung TY, Lau TK, Chiu RW, Lo YM: Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 2008, 54:482-490.
- [15]Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q: Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 2010, 31:659-666.
- [16]Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006, 38:228-233.
- [17]Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Roxe T, Muller-Ardogan M, et al.: Circulating microRNAs in patients with coronary artery disease. Circ Res 2010, 107:677-684.
- [18]Liu J, Hao DD, Zhang JS, Zhu YC: Hydrogen sulphide inhibits cardiomyocyte hypertrophy by up-regulating miR-133a. Biochem Biophys Res Commun 2011, 413:342-347.
- [19]Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, et al.: MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007, 13:613-618.
- [20]Li Q, Lin X, Yang X, Chang J: NFATc4 is negatively regulated in miR-133a-mediated cardiomyocyte hypertrophic repression. Am J Physiol Heart Circ Physiol 2010, 298:H1340-H1347.
- [21]Luo J, Cai Q, Wang W, Huang H, Zeng H, He W, Deng W, Yu H, Chan E, Ng CF, et al.: A microRNA-7 binding site polymorphism in HOXB5 leads to differential gene expression in bladder cancer. PLoS One 2012, 7:e40127.
- [22]Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN: microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008, 22:3242-3254.
- [23]He B, Xiao J, Ren AJ, Zhang YF, Zhang H, Chen M, Xie B, Gao XG, Wang YW: Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci 2011, 18:22. BioMed Central Full Text
- [24]D'Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, et al.: Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 2010, 31:2765-2773.
- [25]Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, et al.: Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 2011, 4:446-454.
- [26]Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Katus HA, Lindahl B, Morrow DA, Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial, et al.: Third universal definition of myocardial infarction. Circulation 2012, 126:2020-2035.
- [27]Long G, Wang F, Duan Q, Chen F, Yang S, Gong W, Wang Y, Chen C, Wang DW: Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci 2012, 8:811-818.
- [28]Wang E, Nie Y, Zhao Q, Wang W, Huang J, Liao Z, Zhang H, Hu S, Zheng Z: Circulating miRNAs reflect early myocardial injury and recovery after heart transplantation. J Cardiothorac Surg 2013, 8:165. BioMed Central Full Text
- [29]Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T, Beissbarth T, Kuner R, Sultmann H: Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 2011, 128:608-616.
- [30]Oerlemans MI, Mosterd A, Dekker MS, de Vrey EA, van Mil A, Pasterkamp G, Doevendans PA, Hoes AW, Sluijter JP: Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Mol Med 2012, 4:1176-1185.
- [31]Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, Benjamin H, Kushnir M, Cholakh H, Melamed N, et al.: Serum microRNAs are promising novel biomarkers. PLoS One 2008, 3:e3148.
- [32]Adachi T, Nakanishi M, Otsuka Y, Nishimura K, Hirokawa G, Goto Y, Nonogi H, Iwai N: Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem 2010, 56:1183-1185.
- [33]Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, et al.: Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 2010, 391:73-77.
- [34]Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, Pinto YM: MiR423-5p as a circulating biomarker for heart failure. Circ Res 2010, 106:1035-1039.
- [35]Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard JM, Mayr A, Weger S, Schett G, Shah A, et al.: Prospective study on circulating MicroRNAs and risk of myocardial infarction. J Am Coll Cardiol 2012, 60:290-299.