期刊论文详细信息
BMC Veterinary Research
Anaplasma phagocytophilum strains from voles and shrews exhibit specific ankA gene sequences
Friederike D von Loewenich3  Richard Birtles1  Kathrin Hartelt2  Nicole Wüppenhorst3  Juliana Majazki3 
[1] School of Environment and Life Sciences, University of Salford, The Crescent, Salford M5 4WT, UK;Baden-Wuerttemberg State Health Office, District Government Stuttgart, Nordbahnhofstrasse 135, Stuttgart D-70191, Germany;Institute of Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, Freiburg D-79104, Germany
关键词: Recombination;    ankA gene;    Genotyping;    Shrews;    Voles;    Anaplasma phagocytophilum;   
Others  :  1119403
DOI  :  10.1186/1746-6148-9-235
 received in 2013-05-10, accepted in 2013-11-25,  发布年份 2013
PDF
【 摘 要 】

Background

Anaplasma phagocytophilum is a Gram-negative bacterium that replicates obligate intracellularly in neutrophils. It is transmitted by Ixodes spp. ticks and causes acute febrile disease in humans, dogs, horses, cats, and livestock. Because A. phagocytophilum is not transmitted transovarially in Ixodes spp., it is thought to depend on reservoir hosts to complete its life cycle. In Europe, A. phagocytophilum was detected in roe deer, red deer, wild boars, and small mammals. In contrast to roe deer, red deer and wild boars have been considered as reservoir hosts for granulocytic anaplasmosis in humans, dogs, and horses according to groESL- and ankA-based genotyping. A. phagocytophilum variants infecting small mammals in Europe have not been characterized extensively to date.

Results

We amplified the total ankA open reading frames of 27 strains from voles and shrews. The analysis revealed that they harboured A. phagocytophilum strains that belonged to a distinct newly described ankA gene cluster. Further, we provide evidence that the heterogeneity of ankA gene sequences might have arisen via recombination.

Conclusions

Based on ankA-based genotyping voles and shrews are unlikely reservoir hosts for granulocytic anaplasmosis in humans, dogs, horses, and livestock in Europe.

【 授权许可】

   
2013 Majazki et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150208064056855.pdf 215KB PDF download
Figure 2. 34KB Image download
Figure 1. 78KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Rikihisa Y: Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev 2011, 24:469-489.
  • [2]Ismail N, Bloch KC, McBride JW: Human ehrlichiosis and anaplasmosis. Clin Lab Med 2010, 30:261-292.
  • [3]Carrade DD, Foley JE, Borjesson DL, Sykes JE: Canine granulocytic anaplasmosis: a review. J Vet Intern Med 2009, 23:1129-1141.
  • [4]Madigan JE, Pusterla N: Ehrlichial diseases. Vet Clin N Am Equine Pract 2000, 16:487-499.
  • [5]Little SE: Ehrlichiosis and anaplasmosis in dogs and cats. Vet Clin North Am Small Anim Pract 2010, 40:1121-1140.
  • [6]Stuen S: Anaplasma phagocytophilum - the most widespread tick-borne infection in animals in Europe. Vet Res Commun 2007, 31(Suppl. 1):79-84.
  • [7]Woldehiwet Z: The natural history of Anaplasma phagocytophilum. Vet Parasitol 2010, 167:108-122.
  • [8]Rar V, Golovljova I: Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect Genet Evol 2011, 11:1842-1861.
  • [9]Jin H, Wei F, Liu Q, Qian J: Epidemiology and control of human granulocytic anaplasmosis: a systematic review. Vector Borne Zoonotic Dis 2011, 12:269-274.
  • [10]Foley JE, Nieto NC, Barbet A, Foley P: Antigen diversity in the parasitic bacterium Anaplasma phagocytophilum arises from selectively-represented, spatially clustered functional pseudogenes. PLoS One 2009, 4:e8265.
  • [11]Scharf W, Schauer S, Freyburger F, Petrovec M, Schaarschmidt-Kiener D, Liebisch G, Runge M, Ganter M, Kehl A, Dumler JS, et al.: Distinct host species correlate with Anaplasma phagocytophilum ankA gene clusters. J Clin Microbiol 2011, 49:790-796.
  • [12]Barlough JE, Madigan JE, DeRock E, Dumler JS, Bakken JS: Protection against Ehrlichia equi is conferred by prior infection with the human granulocytotropic Ehrlichia (HGE agent). J Clin Microbiol 1995, 33:3333-3334.
  • [13]Pusterla N, Pusterla JB, Braun U, Lutz H: Experimental cross-infections with Ehrlichia phagocytophila and human graunlocytic ehrlichia-like agent in cows and horses. Vet Rec 1999, 145:311-314.
  • [14]Scorpio DG, Dumler JS, Barat NC, Cook JA, Barat CE, Stillman BA, DeBisceglie KC, Beall MJ, Chandrashekar R: Comparative strain analysis of Anaplasma phagocytophilum infection and clinical outcomes in a canine model of granulocytic anaplasmosis. Vector Borne Zoonotic Dis 2011, 11:223-229.
  • [15]Ogden NH, Bown K, Horrocks BK, Woldehiwet Z, Bennett M: Granulocytic ehrlichia infection in ixodid ticks and mammals in woodlands and uplands of the U.K. Med Vet Entomol 1998, 12:423-429.
  • [16]Telford SRI, Dawson JE, Katavolos P, Warner CK, Kolbert CP, Persing DH: Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proc Natl Acad Sci U S A 1996, 93:6209-6214.
  • [17]Stafford KCI, Massung RF, Magnarelli LA, IJdo JW, Anderson JF: Infection with agents of human granulocytic ehrlichiosis, Lyme disease, and babesiosis in wild white-footed mice (Peromyscus leucopus) in Connecticut. J Clin Microbiol 1999, 37:2887-2892.
  • [18]Foley JE, Nieto NC, Massung R, Barbet A, Madigan J, Brown RN: Distinct ecologically relevant strains of Anaplasma phagocytophilum. Emerg Infect Dis 2009, 15:842-843.
  • [19]Rejmanek D, Bradburd G, Foley J: Molecular characterization reveals distinct genospecies of Anaplasma phagocytophilum from diverse North American hosts. J Med Microbiol 2012, 61:204-212.
  • [20]Massung RF, Courtney JW, Hiratzka SL, Pitzer VE, Smith G, Dryden RL: Anaplasma phagocytophilum in white-tailed deer. Emerg Infect Dis 2005, 11:1604-1606.
  • [21]Massung RF, Priestley RA, Miller NJ, Mather TN, Levin ML: Inability of a variant strain of Anaplasma phagocytophilum to infect mice. J Infect Dis 2003, 188:1757-1763.
  • [22]Alberdi MP, Walker AR, Urquhart KA: Field evidence that roe deer (Capreolus capreolus) are a natural host for Ehrlichia phagocytophila. Epidemiol Infect 2000, 124:315-323.
  • [23]Petrovec M, Bidovec A, Sumner JW, Nicholson WL, Childs JE, Avsic Zupanc T: Infection with Anaplasma phagocytophila in cervids from Slovenia: evidence of two genotypic lineages. Wien Klin Wochenschr 2002, 114:641-647.
  • [24]Petrovec M, Sixl W, Schweiger R, Mikulasek S, Lebeth E, Wüst G, Marth E, Strasek K, Stünzner D, Avsic Zupanc T: Infections of wild animals with Anaplasma phagocytophila in Austria and the Czech Republic. Ann N Y Acad Sci 2003, 990:103-106.
  • [25]Skuballa J, Petney T, Pfäffle M, Taraschewski H: Molecular detection of Anaplasma phagocytophilum in the European hedgehog (Erinaceus europaeus) and its ticks. Vector Borne Zoonotic Dis 2010, 10:1055-1057.
  • [26]Liz JS, Anderes L, Sumner JW, Massung RF, Gern L, Rutti B, Brossard M: PCR detection of granulocytic ehrlichiae in Ixodes ricinus ticks and wild small mammals in western Switzerland. J Clin Microbiol 2000, 38:1002-1007.
  • [27]von Loewenich FD, Baumgarten BU, Schröppel K, Geißdörfer W, Röllinghoff M, Bogdan C: High diversity of ankA sequences of Anaplasma phagocytophilum among Ixodes ricinus ticks in Germany. J Clin Microbiol 2003, 41:5033-5040.
  • [28]Bown KJ, Lambin X, Ogden NH, Petrovec M, Shaw SE, Woldehiwet Z, Birtles RJ: High-resolution genetic fingerprinting of European strains of Anaplasma phagocytophilum by use of multilocus variable-number tandem-repeat analysis. J Clin Microbiol 2007, 45:1771-1776.
  • [29]Casey AN, Birtles RJ, Radford AD, Bown KJ, French NP, Woldehiwet Z, Ogden NH: Groupings of highly similar major surface protein (p44)-encoding paralogues: a potential index of genetic diversity amongst isolates of Anaplasma phagocytophilum. Microbiology 2004, 150:727-734.
  • [30]Rymaszewska A: Divergence within the marker region of the groESL operon in Anaplasma phagocytophilum. Eur J Clin Microbiol Infect Dis 2008, 27:1025-1036.
  • [31]Strasek Smrdel K, Bidovec A, Malovrh T, Petrovec M, Duh D, Avsic Zupanc T: Detection of Anaplasma phagocytophilum in wild boar in Slovenia. Clin Microbiol Infect 2008, 15:50-52.
  • [32]Michalik J, Stańczak J, Cieniuch S, Racewicz M, Sikora B, Dabert M: Wild boars as hosts of human-pathogenic Anaplasma phagocytophilum variants. Emerg Infect Dis 2012, 18:998-1001.
  • [33]Hartelt K, Pluta S, Oehme R, Kimmig P: Spread of ticks and tick-borne diseases in Germany due to global warming. Parasitol Res 2008, 103:S109-S116.
  • [34]Bown KJ, Lambin X, Ogden NH, Begon M, Telford G, Woldehiwet Z, Birtles RJ: Delineating Anaplasma phagocytophilum ecotypes in coexisting, discrete enzootic cycles. Emerg Infect Dis 2009, 15:1948-1954.
  • [35]Bown KJ, Lambin X, Telford G, Heyder-Bruckner D, Ogden NH, Birtles RJ: The common shrew (Sorex araneus): a neglected host of tick-borne infections? Vector Borne Zoonotic Dis 2011, 11:947-953.
  • [36]Goodmann JL, Nelson C, Vitale B, Madigan JE, Dumler JS, Kurtti TJ, Munderloh UG: Direct cultivation of the causative agent of human granulocytic ehrlichiosis. N Engl J Med 1996, 334:209-215.
  • [37]Munderloh UG, Jauron SD, Fingerle V, Leitritz L, Hayes SF, Hautman JM, Nelson CM, Huberty BW, Kurtti TJ, Ahlstrand GG, et al.: Invasion and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. J Clin Microbiol 1999, 37:2518-2524.
  • [38]Massung RF, Slater K, Owens JH, Nicholson WL, Mather TN, Solberg VB, Olson JG: Nested PCR assay for detection of granulocytic ehrlichiae. J Clin Microbiol 1998, 36:1090-1095.
  • [39]Massung RF, Owens JH, Ross D, Reed KD, Petrovec M, Bjöersdorff A, Coughlin RT, Beltz GA, Murphy CI: Sequence analysis of the ank gene of granulocytic Ehrlichiae. J Clin Microbiol 2000, 38:2917-2922.
  • [40]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maxium likelihood, evolutionay distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [41]Maydt J, Lengauer T: Recco: recombination analysis using cost optimization. Bioinformatics 2006, 22:1064-1071.
  • [42]Rar VA, Epikhina TI, Livanova NN, Panov VV, Doroschenko EK, Pukhovskaya NM, Vysochina NP, Ivanov LI: Genetic variability of Anaplasma phagocytophilum in Ixodes persulcatus ticks and small mammals in the Asian part of Russia. Vector Borne Zoonotic Dis 2011, 11:1013-1021.
  • [43]Bown KJ, Begon M, Bennett M, Woldehiwet Z, Ogden NH: Seasonal dynamics of Anaplasma phagocytophila in a rodent-tick (Ixodes trianguliceps) system, United Kingdom. Emerg Infect Dis 2003, 9:63-70.
  • [44]Hayashi T, Morohashi H, Hatakeyama M: Bacterial EPIYA effectors - where do they come from? What are they? Where are they going? Cell Microbiol 2013, 15:377-385.
  • [45]Rikihisa Y, Lin M, Niu H: Type IV secretion in the obligatory intracellular bacterium Anaplasma phagocytophilum. Cell Microbiol 2010, 12:1213-1221.
  • [46]Rikihisa Y, Lin M: Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins. Curr Opin Microbiol 2010, 13:59-66.
  • [47]IJdo JW, Carlson AC, Kennedy EL: Anaplasma phagocytophilum AnkA is tyrosine-phosphorylated at EPIYA motifs and recruits SHP-1 during early infection. Cell Microbiol 2007, 9:1284-1296.
  • [48]Furuta Y, Yahara K, Hatakeyama M, Kobayashi KS: Evolution of cagA oncogene of Helicobacter pylori through recombination. PLoS One 2011, 6:e23499.
  • [49]Al-Khedery B, Lundgren AM, Stuen S, Granquist EG, Munderloh UG, Nelson CM, Alleman AR, Mahan SM, Barbet AF: Structure of the type IV secretion system in different strains of Anaplasma phagocytophilum. BMC Genomics 2012, 13:678. BioMed Central Full Text
  • [50]Pluta S, Hartelt K, Oehme R, Mackenstedt U, Kimmig P: Prevalence of Coxiella burnetii and Rickettsia spp. in ticks and rodents in southern Germany. Ticks Tick Borne Dis 2010, 1:145-147.
  文献评价指标  
  下载次数:2次 浏览次数:2次