期刊论文详细信息
Genome Biology
Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera)
Leonard J Foster3  Stephen F Pernal1  Elizabeth Huxter2  Rick White4  Kyung-Mee Moon3  Andony P Melathopoulos1  M Marta Guarna3  Robert Parker3 
[1] Agriculture & Agri-Food Canada, Beaverlodge Research Farm, PO Box 29, Beaverlodge, AB, T0H 0C0, Canada;Kettle Valley Queens, 4880 Well Rd., Grand Forks, BC, V0H 1H5, Canada;University of British Columbia, Centre for High-Throughput Biology and Department of Biochemistry & Molecular Biology, 2125 East Mall, Vancouver, BC, V6T 14, Canada;University of British Columbia, Department of Statistics, 2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada
关键词: Varroa sensitive hygiene;    Hygienic behavior;    Social immunity;    Proteomics;    Honey bee;   
Others  :  869596
DOI  :  10.1186/gb-2012-13-9-r81
 received in 2012-04-14, accepted in 2012-09-28,  发布年份 2012
PDF
【 摘 要 】

Background

Disease is a major factor driving the evolution of many organisms. In honey bees, selection for social behavioral responses is the primary adaptive process facilitating disease resistance. One such process, hygienic behavior, enables bees to resist multiple diseases, including the damaging parasitic mite Varroa destructor. The genetic elements and biochemical factors that drive the expression of these adaptations are currently unknown. Proteomics provides a tool to identify proteins that control behavioral processes, and these proteins can be used as biomarkers to aid identification of disease tolerant colonies.

Results

We sampled a large cohort of commercial queen lineages, recording overall mite infestation, hygiene, and the specific hygienic response to V. destructor. We performed proteome-wide correlation analyses in larval integument and adult antennae, identifying several proteins highly predictive of behavior and reduced hive infestation. In the larva, response to wounding was identified as a key adaptive process leading to reduced infestation, and chitin biosynthesis and immune responses appear to represent important disease resistant adaptations. The speed of hygienic behavior may be underpinned by changes in the antenna proteome, and chemosensory and neurological processes could also provide specificity for detection of V. destructor in antennae.

Conclusions

Our results provide, for the first time, some insight into how complex behavioural adaptations manifest in the proteome of honey bees. The most important biochemical correlations provide clues as to the underlying molecular mechanisms of social and innate immunity of honey bees. Such changes are indicative of potential divergence in processes controlling the hive-worker maturation.

【 授权许可】

   
2012 Parker et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140730020600835.pdf 645KB PDF download
67KB Image download
57KB Image download
79KB Image download
27KB Image download
89KB Image download
57KB Image download
【 图 表 】

【 参考文献 】
  • [1]Evans JD, Spivak M: Socialized medicine: individual and communal disease barriers in honey bees. J Invertebr Pathol 2010, 103:S62-S72.
  • [2]Anderson DL, Trueman JWH: Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp Appl Acarol 2000, 24:165-189.
  • [3]Le Conte Y, Ellis M, Ritter W: Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 2010, 41:353-363.
  • [4]Rosenkranz P, Aumeier P, Ziegelmann B: Biology and control of Varroa destructor. J Invertebr Pathol 2010, 103:S96-S119.
  • [5]Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, Kanost M, Thompson GJ, Zou Z, Hultmark D: Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Biol 2006, 15:645-656.
  • [6]Rothenbuhler WC: Behavior genetics of nest cleaning in honey bees. IV. Responses of Fx and backcross generations to disease-killed brood. Am Zool 1964, 4:111-123.
  • [7]Harbo J, Harris J: Suppressed mite reproduction explained by the behaviour of adult bees. J Apicultural Res 2005, 44:21-23.
  • [8]Ibrahim A, Spivak M: The relationship between hygienic behavior and suppression of mite reproduction as honey bee (Apis mellifera) mechanisms of resistance to Varroa destructor. Apidologie 2006, 37:31-40.
  • [9]Spivak M, Reuter GS: Performance of hygienic honey bee colonies in a commercial apiary. Apidologie 1998, 29:291-302.
  • [10]Harbo JR, Harris JW: Responses to Varroa by honey bees with different levels of Varroa Sensitive Hygiene. J Apicultural Res 2009, 48:156-161.
  • [11]Spivak M, Downey DL: Field assays for hygienic behavior in honey bees (Hymenoptera: Apidae). J Econ Entomol 1998, 91:64-70.
  • [12]Harbo JR, Harris JW: Resistance to Varroa destructor (Mesostigmata: Varroidae) when mite-resistant queen honey bees (Hymenoptera: Apidae) were free-mated with unselected drones. J Econ Entomol 2001, 94:1319-1323.
  • [13]Pernal S, Sewalem A, Melathopoulos A: Breeding for hygienic behaviour in honeybees (Apis mellifera ) using free-mated nucleus colonies. Apidologie 2012, 43:403-424.
  • [14]Rinderer TE, Harris JW, Hunt GJ, de Guzman LI: Breeding for resistance to Varroa destructor in North America. Apidologie 2010, 41:409-424.
  • [15]Oxley PR, Spivak M, Oldroyd BP: Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera). Mol Ecol 2010, 19:1452-1461.
  • [16]Gregory PG, Evans JD, Rinderer T, de Guzman L: Conditional immune-gene suppression of honeybees parasitized by Varroa mites. J Insect Sci 2005, 5:7.
  • [17]Navajas M, Migeon A, Alaux C, Martin-Magniette ML, Robinson GE, Evans JD, Cros-Arteil S, Crauser D, Le Conte Y: Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics 2008, 9:301. BioMed Central Full Text
  • [18]Zhang Y, Liu X, Zhang W, Han R: Differential gene expression of the honey bees Apis mellifera and A. cerana induced by Varroa destructor infection. J Insect Physiol 2010, 56:1207-1218.
  • [19]Le Conte Y, Alaux C, Martin JF, Harbo JR, Harris JW, Dantec C, Severac D, Cros-Arteil S, Navajas M: Social immunity in honeybees (Apis mellifera): transcriptome analysis of varroa-hygienic behaviour. Insect Mol Biol 2011, 20:399-408.
  • [20]Parker R, Melathopoulos AP, White R, Pernal SF, Guarna MM, Foster LJ: Ecological adaptation of diverse honey bee (Apis mellifera) populations. Plos One 2010, 5:e11096.
  • [21]Lamant M, Smih F, Harmancey R, Philip-Couderc P, Pathak A, Roncalli J, Galinier M, Collet X, Massabuau P, Senard JM, Rouet P: ApoO, a novel apolipoprotein, is an original glycoprotein up-regulated by diabetes in human heart. J Biol Chem 2006, 281:36289-36302.
  • [22]Hong S-T, Bang S, Hyun S, Kang J, Jeong K, Paik D, Chung J, Kim J: cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila. Nature 2008, 454:771-775.
  • [23]Yanay C, Morpurgo N, Linial M: Evolution of insect proteomes: insights into synapse organization and synaptic vesicle life cycle. Genome Biol 2008, 9:R27. BioMed Central Full Text
  • [24]Jung D-H, Park H-J, Byun H-E, Park Y-M, Kim T-W, Kim B-O, Um S-H, Pyo S: Diosgenin inhibits macrophage-derived inflammatory mediators through downregulation of CK2, JNK, NF-kappa B and AP-1 activation. Int Immunopharmacol 2010, 10:1047-1054.
  • [25]Bischoff V, Vignal C, Boneca IG, Michel T, Hoffmann JA, Royet J: Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat Immunol 2004, 5:1175-1180.
  • [26]Michel T, Reichhart JM, Hoffmann JA, Royet J: Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 2001, 414:756-759.
  • [27]van der Horst DJ, van Hoof D, van Marrewijk WJ, Rodenburg KW: Alternative lipid mobilization: the insect shuttle system. Mol Cell Biochem 2002, 239:113-119.
  • [28]Li WH, Tanimura M, Luo CC, Datta S, Chan L: The apolipoprotein multigene family: biosynthesis, structure, structure-function relationships, and evolution. J Lipid Res 1988, 29:245-271.
  • [29]Whitten MM, Tew IF, Lee BL, Ratcliffe NA: A novel role for an insect apolipoprotein (apolipophorin III) in beta-1,3-glucan pattern recognition and cellular encapsulation reactions. J Immunol 2004, 172:2177-2185.
  • [30]Garedew A, Schmolz E, Lamprecht I: The energy and nutritional demand of the parasitic life of the mite Varroa destructor. Apidologie 2004, 35:419-430.
  • [31]de D'Aubeterre JP, Myrold DD, Royce LA, Rossignol PA: A scientific note of an application of isotope ratio mass spectrometry to feeding by the mite, Varroa jacobsoni Oudemans, on the honeybee, Apis mellifera L. Apidologie 1999, 30:351-352.
  • [32]Tewarson NC, Singh A, Engels W: Reproduction of Varroa-Jacobsoni in colonies of Apis cerana-indica under natural and experimental conditions. Apidologie 1992, 23:161-171.
  • [33]Feldhaar H, Gross R: Immune reactions of insects on bacterial pathogens and mutualists. Microbes Infect 2008, 10:1082-1088.
  • [34]Dushay MS: Insect hemolymph clotting. Cell Mol Life Sci 2009, 66:2643-2650.
  • [35]Kanbar G, Engels W: Ultrastructure and bacterial infection of wounds in honey bee (Apis mellifera) pupae punctured by Varroa mites. Parasitol Res 2003, 90:349-354.
  • [36]Jensen K, de Miranda Santos IK, Glass EJ: Using genomic approaches to unravel livestock (host)-tick-pathogen interactions. Trends Parasitol 2007, 23:439-444.
  • [37]Yang X, Cox-Foster DL: Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc Natl Acad Sci USA 2005, 102:7470-7475.
  • [38]Richards EH, Jones B, Bowman A: Salivary secretions from the honeybee mite, Varroa destructor: effects on insect haemocytes and preliminary biochemical characterization. Parasitology 2011, 138:602-608.
  • [39]Navajas M, Migeon A, Alaux C, Martin-Magniette M, Robinson G, Evans J, Cros-Arteil S, Crauser D, Le Conte Y: Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics 2008, 9:301. BioMed Central Full Text
  • [40]Swanson JAI, Torto B, Kells SA, Mesce KA, Tumlinson JH, Spivak M: Odorants that induce hygienic behavior in honeybees: identification of volatile compounds in chalkbrood-infected honeybee larvae. J Chem Ecol 2009, 35:1108-1116.
  • [41]Spivak M, Masterman R, Ross R, Mesce KA: Hygienic behavior in the honey bee (Apis mellifera L.) and the modulatory role of octopamine. J Neurobiol 2003, 55:341-354.
  • [42]Schulz DJ, Barron AB, Robinson GE: A role for octopamine in honey bee division of labor. Brain Behav Evol 2002, 60:350-359.
  • [43]Fahrbach SE, Robinson GE: Juvenile hormone, behavioral maturation, and brain structure in the honey bee. Dev Neurosci 1996, 18:102-114.
  • [44]Koch I, Schwarz H, Beuchle D, Goellner B, Langegger M, Aberle H: Drosophila ankyrin 2 is required for synaptic stability. Neuron 2008, 58:210-222.
  • [45]Dent EW, Gupton SL, Gertler FB: The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 2011. doi: 10.1101/cshperspect.a001800
  • [46]Arnold G, Masson C, Budharugsa S: Comparative study of the antennal lobes and their afferent pathway in the worker bee and the drone (Apis mellifera). Cell Tissue Res 1985, 242:593-605.
  • [47]Brockmann A, Bruckner D: Structural differences in the drone olfactory system of two phylogenetically distant Apis species, A-florea and A-mellifera. Naturwissenschaften 2001, 88:78-81.
  • [48]Harris JW: Bees with Varroa Sensitive Hygiene preferentially remove mite infested pupae aged <= five days post capping. J Apicultural Res 2007, 46:134-139.
  • [49]Fujikawa K, Seno K, Ozaki M: A novel Takeout-like protein expressed in the taste and olfactory organs of the blowfly, Phormia regina. FEBS J 2006, 273:4311-4321.
  • [50]Hagai T, Cohen M, Bloch G: Genes encoding putative Takeout/juvenile hormone binding proteins in the honeybee (Apis mellifera) and modulation by age and juvenile hormone of the takeout-like gene GB19811. Insect Biochem Mol Biol 2007, 37:689-701.
  • [51]Del Piccolo F, Nazzi F, Della Vedova G, Milani N: Selection of Apis mellifera workers by the parasitic mite Varroa destructor using host cuticular hydrocarbons. Parasitology 2010, 137:967-973.
  • [52]Salvy M, Martin C, Bagneres AG, Provost E, Roux M, Le Conte Y, Clement JL: Modifications of the cuticular hydrocarbon profile of Apis mellifera worker bees in the presence of the ectoparasitic mite Varroa jacobsoni in brood cells. Parasitology 2001, 122:145-159.
  • [53]Harris JW, Harbo JR, Villa JD, Danka RG: Variable population growth of Varroa destructor (Mesostigmata: Varroidae) in colonies of honey bees (Hymenoptera: Apidae) during a 10-year period. Environ Entomol 2003, 32:1305-1312.
  • [54]Foster LJ, de Hoog CL, Mann M: Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 2003, 100:5813-5818.
  • [55]Boersema PJ, Aye TT, van Veen TAB, Heck AJR, Mohammed S: Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 2008, 8:4624-4632.
  • [56]Ishihama Y, Rappsilber J, Mann M: Modular stop and go extraction tips with stacked disks for parallel and multidimensional peptide fractionation in proteomics. J Proteome Res 2006, 5:988-994.
  • [57]Rogers LD, Fang Y, Foster LJ: An integrated global strategy for cell lysis, fractionation, enrichment and mass spectrometric analysis of phosphorylated peptides. Mol Biosyst 2010, 6:822-829.
  • [58]Peptide Atlas [http://www.peptideatlas.org/builds/honeybee/index.php] webcite
  • [59]Chan QWT, Parker P, Sun Z, Deutsch EW, Foster LJ: A honey bee (Apis mellifera L.) PeptideAtlas crossing castes and tissues. BMC Genomics 2011, 12:290. BioMed Central Full Text
  • [60]Paquette J, Tokuyasu T: EGAN: exploratory gene association networks. Bioinformatics 2010, 26:285-286.
  • [61]DeLuca TF, Wu IH, Pu J, Monaghan T, Peshkin L, Singh S, Wall DP: Roundup: a multi-genome repository of orthologs and evolutionary distances. Bioinformatics 2006, 22:2044-2046.
  • [62]Rannikko K, Ortutay C, Vihinen M: Immunity genes and their orthologs: a multi-species database. Int Immunol 2007, 19:1361-1370.
  • [63]Chan QWT, Melathopoulos AP, Pernal SF, Foster LJ: The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae. BMC Genomics 2009, 10:387. BioMed Central Full Text
  • [64]Johnson RM, Evans JD, Robinson GE, Berenbaum MR: Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera). Proc Natl Acad Sci USA 2009, 106:14790-14795.
  文献评价指标  
  下载次数:41次 浏览次数:15次