BMC Genomics | |
Differential gene expression between hygienic and non-hygienic honeybee (Apis mellifera L.) hives | |
Nicolas Derome2  Pierre Giovenazzo2  Pierre-Luc Mercier3  Mohamed Alburaki1  Sébastien Boutin3  | |
[1] Entomology and Plant Pathology Department, West TN Research and Education Center, The University of Tennessee, 605 Airways Blvd, Jackson 38301, TN, USA;Département de biologie, Faculté des sciences et de genie, Université Laval, Québec, Canada;Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène Marchand, bureau 1253, 1030, Avenue de la Médecine, Québec, G1V 0A6, QC, Canada | |
关键词: Cytochrome P450 and QTL regions; Hygienic behavior; Gene expression; Honeybee; | |
Others : 1219165 DOI : 10.1186/s12864-015-1714-y |
|
received in 2014-02-18, accepted in 2015-06-23, 发布年份 2015 | |
【 摘 要 】
Background
Hygienic behavior is a complex, genetically-based quantitative trait that serves as a key defense mechanism against parasites and diseases in Apis mellifera. Yet, the genomic basis and functional pathways involved in the initiation of this behavior are still unclear. Deciphering the genomic basis of hygienic behavior is a prerequisite to developing an extensive repertoire of genetic markers associated to the performance level of this quantitative trait. To fill this knowledge gap, we performed an RNA-seq on brain samples of 25 honeybees per hives from five hygienic and three non-hygienic hives.
Results
This analysis revealed that a limited number of functional genes are involved in honeybee hygienic behavior. The genes identified, and especially their location in the honeybee genome, are consistent with previous findings. Indeed, the genomic sequences of most differentially expressed genes were found on the majority of the QTL regions associated to the hygienic behavior described in previous studies. According to the Gene Ontology annotation, 15 genes are linked to the GO-terms DNA or nucleotide binding, indicating a possible role of these genes in transcription regulation. Furthermore, GO-category enrichment analysis revealed that electron carrier activity is over-represented, involving only genes belonging to the cytochrome P450. Cytochrome P450 enzymes’ overexpression can be explained by a disturbance in the regulation of expression induced by changes in transcription regulation or sensitivity to xenobiotics. Over-expressed cytochrome P450 enzymes could potentially degrade the odorant pheromones or chemicals that normally signal the presence of a diseased brood before activation of the removal process thereby inhibit hygienic behavior.
Conclusions
These findings improve our understanding on the genetics basis of the hygienic behavior. Our results show that hygienic behavior relies on a limited set of genes linked to different regulation patterns (expression level and biological processes) associated with an over-expression of cytochrome P450 genes.
【 授权许可】
2015 Boutin et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150715085654231.pdf | 1831KB | download | |
Fig. 3. | 81KB | Image | download |
Fig. 2. | 23KB | Image | download |
Fig. 1. | 38KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
【 参考文献 】
- [1]Aizen MA, Garibaldi LA, Cunningham SA, Klein AM. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann Bot. 2009; 103(9):1579-88.
- [2]Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C et al.. Importance of pollinators in changing landscapes for world crops. Proc R Soc B Biol Sci. 2007; 274(1608):303-13.
- [3]Delaplane KS, Mayer DF. Crop pollination by bees: Cabi. 2000.
- [4]van der Zee R, Pisa L, Andonov S, Brodschneider R, Charriere JD, Chlebo R et al.. Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10. J Apicult Res. 2012; 51(1):91-114.
- [5]Guzman-Novoa E, Eccles L, Calvete Y, Mcgowan J, Kelly PG, Correa-Benitez A. Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie. 2010; 41(4):443-50.
- [6]Johnson RM, Ellis MD, Mullin CA, Frazier M. Pesticides and honey bee toxicity—USA. Apidologie. 2010; 41(3):312-31.
- [7]van der Sluijs JP, Simon-Delso N, Goulson D, Maxim L, Bonmatin J-M, Belzunces LP. Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Environ Sustain. 2013.
- [8]Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Vanengelsdorp D et al.. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One. 2010; 5(3):e9754.
- [9]Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delègue M-H. Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol Environ Saf. 2004; 57(3):410-9.
- [10]Martin SJ, Ball BV, Carreck NL. Prevalence and persistence of deformed wing virus (DWV) in untreated or acaricide-treated Varroa destructor infested honey bee (Apis mellifera) colonies. J Apicult Res. 2010; 49(1):72-9.
- [11]Zioni N, Soroker V, Chejanovsky N. Replication of Varroa destructor virus 1 (VDV-1) and a Varroa destructor virus 1-deformed wing virus recombinant (VDV-1-DWV) in the head of the honey bee. Virology. 2011; 417(1):106-12.
- [12]Bromenshenk JJ, Henderson CB, Wick CH, Stanford MF, Zulich AW, Jabbour RE et al.. Iridovirus and microsporidian linked to honey bee colony decline. PLoS One. 2010; 5(10):e13181.
- [13]Fries I. Nosema ceranae in European honey bees (Apis mellifera). J Invertebr Pathol. 2010; 103:S73-9.
- [14]Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P. Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees. Appl Environ Microbiol. 2012; 78(4):981-7.
- [15]Wu JY, Smart MD, Anelli CM, Sheppard WS. Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J Invertebr Pathol. 2012; 109(3):326-9.
- [16]Evans JD, Spivak M. Socialized medicine: Individual and communal disease barriers in honey bees. J Invertebr Pathol. 2010; 103 Supplement(0):S62-72.
- [17]Schmid MR, Brockmann A, Pirk CWW, Stanley DW, Tautz J. Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J Insect Physiol. 2008; 54(2):439-44.
- [18]Wilson-Rich N, Dres ST, Starks PT. The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). J Insect Physiol. 2008; 54(10–11):1392-9.
- [19]Evans JD. Beepath: an ordered quantitative-PCR array for exploring honey bee immunity and disease. J Invertebr Pathol. 2006; 93(2):135-9.
- [20]Wilson-Rich N, Spivak M, Fefferman NH, Starks PT. Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol. 2008; 54(1):405-23.
- [21]Spivak M, Gilliam M. Hygienic behaviour of honey bees and its application for control of brood diseases and varroa. Bee World. 1998; 79(3):124-34.
- [22]Thompson VC. Behaviour genetics of nest cleaning in honey bees. III. Effect of age of bees of a resistant line on their response to disease-killed brood. J Apic Res. 1964; 3(1):25-30.
- [23]Park O, Pellet F, Paddock F. Disease resistance and American foulbrood. Am Bee J. 1937; 77(1):20-5.
- [24]Jones RL, Rothenbuhler WC. Behaviour genetics of nest cleaning in honey bees. II. Responses of two inbred lines to various amounts of cyanide-killed brood. Anim Behav. 1964; 12(4):584-8.
- [25]Momot J, Rothenbuhler W. Behaviour genetics of nest cleaning in honeybees. VI. Interactions of age and genotype of bees, and nectar flow. J Apicult Res. 1971; 10(1):11-21.
- [26]Rothenbuhler WC. Behaviour genetics of nest cleaning in honey bees. I. Responses of four inbred lines to disease-killed brood. Anim Behav. 1964; 12(4):578-83.
- [27]Trump R, Thompson V, Rothenbuhler W. Behaviour genetics of nest cleaning in honey bees. V. Effect of previous experience and composition of mixed colonies on response to disease-killed brood. J Apic Res. 1967; 6(3):127-31.
- [28]Rothenbuhler WC. Behavior genetics of nest cleaning in honey bees. IV. Responses of F 1 and backcross generations to disease-killed brood. Am Zool. 1964; 4(2):111-23.
- [29]Moritz RFA. A reevaluation of the two-locus model for hygienic behavior in honeybees (Apis mellifera L.). J Hered. 1988; 79(4):257-62.
- [30]Tsuruda JM, Harris JW, Bourgeois L, Danka RG, Hunt GJ. High-resolution linkage analyses to identify genes that influence < italic > Varroa sensitive hygiene behavior in honey bees. PLoS One. 2012; 7(11):e48276.
- [31]Oxley PR, Spivak M, Oldroyd BP. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera). Mol Ecol. 2010; 19(7):1452-61.
- [32]Lapidge KL, Oldroyd BP, Spivak M. Seven suggestive quantitative trait loci influence hygienic behavior of honey bees. Naturwissenschaften. 2002; 89(12):565-8.
- [33]Spötter A, Gupta P, Nürnberg G, Reinsch N, Bienefeld K. Development of a 44 K SNP assay focussing on the analysis of a varroa-specific defence behaviour in honey bees (Apis mellifera carnica). Mol Ecol Resour. 2012; 12(2):323-32.
- [34]Masterman R, Ross R, Mesce K, Spivak M. Olfactory and behavioral response thresholds to odors of diseased brood differ between hygienic and non-hygienic honey bees (Apis mellifera L.). J Comp Physiol A. 2001; 187(6):441-52.
- [35]Masterman R, Smith B, Spivak M. Brood odor discrimination abilities in hygienic honey bees (Apis mellifera L.) using proboscis extension reflex conditioning. J Insect Behav. 2000; 13(1):87-101.
- [36]Spivak M, Masterman R, Ross R, Mesce KA. Hygienic behavior in the honey bee (Apis mellifera L.) and the modulatory role of octopamine. J Neurobiol. 2003; 55(3):341-54.
- [37]Zayed A, Robinson GE. Understanding the relationship between brain gene expression and social behavior: lessons from the honey Bee. Annu Rev Genet. 2012; 46(1):591-615.
- [38]Spivak M, Downey DL. Field assays for hygienic behavior in honey bees (Hymenoptera : Apidae). J Econ Entomol. 1998; 91(1):64-70.
- [39]Evans JD, Wheeler DE. Differential gene expression between developing queens and workers in the honey bee, Apis mellifera. Proc Natl Acad Sci. 1999; 96(10):5575-80.
- [40]Liu F, Li W, Li Z, Zhang S, Chen S, Su S. High-abundance mRNAs in Apis mellifera: comparison between nurses and foragers. J Insect Physiol. 2011; 57(2):274-9.
- [41]Cash AC, Whitfield CW, Ismail N, Robinson GE. Behavior and the limits of genomic plasticity: power and replicability in microarray analysis of honeybee brains. Genes Brain Behav. 2005; 4(4):267-71.
- [42]Johnson B, Atallah J, Plachetzki D. The importance of tissue specificity for RNA-seq: highlighting the errors of composite structure extractions. BMC Genomics. 2013; 14(1):586. BioMed Central Full Text
- [43]Alaux C, Le Conte Y, Adams H, Rodriguez‐Zas S, Grozinger C, Sinha S et al.. Regulation of brain gene expression in honey bees by brood pheromone. Genes Brain Behav. 2009; 8(3):309-19.
- [44]Le Conte Y, Mohammedi A, Robinson GE. Primer effects of a brood pheromone on honeybee behavioural development. Proc R Soc Lond Ser B Biol Sci. 2001; 268(1463):163-8.
- [45]Greenberg J, Xia J, Zhou X, Thatcher S, Gu X, Ament S et al.. Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome. Genes Brain Behav. 2012; 11(6):660-70.
- [46]Feyereisen R. INSECT P450 ENZYMES. Annu Rev Entomol. 1999; 44(1):507-33.
- [47]Johnson RM, Mao W, Pollock HS, Niu G, Schuler MA, Berenbaum MR. Ecologically appropriate xenobiotics induce cytochrome P450s in < italic > Apis mellifera. PLoS ONE. 2012; 7(2):e31051.
- [48]Chomczynski P. A reagent for the single-step simultaneous isolation of Rna, DNA and proteins from cell and tissue samples. Biotechniques. 1993; 15(3):532-4.
- [49]Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013; 14(4):R36. BioMed Central Full Text
- [50]Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR et al.. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols. 2012; 7(3):562-78.
- [51]Lassmann T, Hayashizaki Y, Daub CO. SAMStat: monitoring biases in next generation sequencing data. Bioinformatics. 2011; 27(1):130-1.
- [52]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005; 21(18):3674-6.