期刊论文详细信息
Journal of Biomedical Science
Evaluation of Neurotrophic Tyrosine Receptor Kinase 2 (NTRK2) as a positional candidate gene for variation in estimated Glomerular Filtration Rate (eGFR) in Mexican American participants of San Antonio Family Heart Study
Hanna E Abboud1  Anthony G Comuzzie4  John Blangero4  V Saroja Voruganti3  Farook Thameem2 
[1] South Texas Veterans Healthcare System, San Antonio 78229, TX, USA;Department of Biochemistry, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis 28081, NC, USA;Department of Genetics, Texas Biomedical Research Institute, San Antonio 78227, TX, USA
关键词: SNPs;    Genetic variants;    SOLAR;    Mexican Americans;    NTRK2;    Glomerular filtration rate (GFR);   
Others  :  1146108
DOI  :  10.1186/s12929-015-0123-5
 received in 2014-09-03, accepted in 2015-02-26,  发布年份 2015
PDF
【 摘 要 】

Background

The estimated glomerular filtration rate (eGFR) is a well-known measure of kidney function and is commonly used for the diagnosis and management of patients with chronic kidney disease. The inter-individual variation in eGFR has significant genetic component. However, the identification of underlying genetic susceptibility variants has been challenging. In an attempt to identify and characterize susceptibility genetic variant(s) we previously identified the strongest evidence for linkage of eGFR occurring on chromosome 9q21 in the Mexican American participants of San Antonio Family Heart Study (SAFHS). The objective of the present study was to examine whether the common genetic variants in Neurotrophic Tyrosine Receptor Kinase 2 (NTRK2), a positional candidate gene on 9q21, contribute to variation in eGFR.

Results

Twelve tagging single nucleotide polymorphisms (SNPs) across the NTRK2 gene region were selected (r2 ≥ 0.80, minor allele frequency of ≥ 0.05) from the Hapmap database. SNPs were genotyped by TaqMan assay in the 848 Mexican American subjects participated in the SAFHS. Association analysis between the genotypes and eGFR (estimated by the Modification of Diet in Renal Disease equation) were performed by measured genotype approach as implemented in the program SOLAR. Of the 12 common genetic variants examined, the rs1036915 (located in 3′UTR) and rs1187274 (located in intron-14), present in perfect linkage disequilibrium, exhibited an association (P = 0.017) with eGFR after accounting for the effects of age, sex, diabetes, diabetes duration, systolic blood pressure and blood pressure medication. The carriers of minor allele of rs1036915 (G; 38%) had increased eGFR (104 ± 25 ml/min/1.73 m2) in comparison to the carriers of major allele A (98 ± 25 ml/min/1.73 m2).

Conclusion

Together, our results suggest for the first time that the genetic variants in NTRK2 may regulate eGFR.

【 授权许可】

   
2015 Thameem et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150403091234283.pdf 530KB PDF download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Perkins RM, Tang X, Bengier AC, Kirchner HL, Bucaloiu ID: Variability in estimated glomerular filtration rate is an independent risk factor for death among patients with stage 3 chronic kidney disease. Kidney Int 2012, 82:1332-8.
  • [2]Turin TC, Coresh J, Tonelli M, Stevens PE, de Jong PE, Farmer CK, et al.: Change in the estimated glomerular filtration rate over time and risk of all-cause mortality. Kidney Int 2013, 83:684-91.
  • [3]Köttgen A: Genome-wide association studies in nephrology research. Am J Kidney Dis 2010, 56:743-58.
  • [4]Arar NH, Voruganti VS, Nath SD, Thameem F, Bauer R, Cole SA, et al.: A genome-wide search for linkage to chronic kidney disease in a community-based sample: the SAFHS. Nephrol Dial Transplant 2008, 23:3184-91.
  • [5]Yoshii A, Constantine-Paton M: Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 2010, 70:304-22.
  • [6]Lu B, Nagappan G, Guan X, Nathan PJ, Wren P: BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 2013, 14:401-16.
  • [7]Huber LJ, Hempstead B, Donovan MJ: Neurotrophin and neurotrophin receptors in human fetal kidney. Dev Biol 1996, 179:369-81.
  • [8]García-Suárez O, González-Martínez T, Germana A, Monjil DF, Torrecilla JR, Laurà R, et al.: Expression of TrkB in the murine kidney. Microsc Res Tech 2006, 69:1014-20.
  • [9]Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR, et al.: Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci 2003, 6:736-42.
  • [10]Matthews VB, Aström MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, et al.: Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 2009, 52:1409-18.
  • [11]Noble EE, Billington CJ, Kotz CM, Wang C: The lighter side of BDNF. Am J Physiol Regul Integr Comp Physiol 2011, 300:R1053-69.
  • [12]Yeo GS, Connie Hung CC, Rochford J, Keogh J, Gray J, Sivaramakrishnan S, et al.: A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci 2004, 7:1187-9.
  • [13]Ribases M, Gratacos M, Badia A, Jimenez L, Solano R, Vallejo J, et al.: Contribution of NTRK2 to the genetic susceptibility to anorexia nervosa, harm avoidance and minimum body mass index. Mol Psychiatry 2005, 10:851-60.
  • [14]Farooqi S, O’Rahilly S: Genetics of obesity in humans. Endocr Rev 2006, 27:710-8.
  • [15]MacCluer JW, Stern MP, Almasy L, Atwood LA, Blangero J, Comuzzie AG, et al.: Genetics of atherosclerosis risk factors in Mexican Americans. Nutr Rev 1999, 57:S59-65.
  • [16]Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D: Modification of diet in renal disease study group: a more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 1999, 130:461-70.
  • [17]Sobel E, Lange K: Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 1996, 58:1323-37.
  • [18]Almasy L, Blangero J: Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998, 62:1198-211.
  • [19]Boerwinkle E, Chakraborty R, Sing CF: The use of measured genotype information in the analysis of quantitative phenotypes in man. I. Models and analytical methods. Ann Hum Genet 1986, 50:181-94.
  • [20]Cockcroft DW, Gault MH: Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16:31-41.
  • [21]Bochud M, Elston RC, Maillard M, Bovet P, Schild L, Shamlaye C, et al.: Heritability of renal function in hypertensive families of African descent in the Seychelles (Indian Ocean). Kidney Int 2005, 67:61-9.
  • [22]Hunt SC, Coon H, Hasstedt SJ, Cawthon RM, Camp NJ, Wu LL, et al.: Linkage of serum creatinine and glomerular filtration rate to chromosome 2 in Utah pedigrees. Am J Hypertens 2004, 17:511-5.
  • [23]Fox CS, Yang Q, Cupples LA, Guo CY, Larson MG, Leip EP, et al.: Genomewide linkage analysis to serum creatinine, GFR, and creatinine clearance in a community-based population: the Framingham Heart Study. J Am Soc Nephrol 2004, 15:2457-61.
  • [24]Turner ST, Kardia SL, Mosley TH, Rule AD, Boerwinkle E, de Andrade M: Influence of genomic loci on measures of chronic kidney disease in hypertensive sibships. J Am Soc Nephrol 2006, 17:2048-55.
  • [25]Placha G, Poznik GD, Dunn J, Smiles A, Krolewski B, Glew T, et al.: A genome-wide linkage scan for genes controlling variation in renal function estimated by serum cystatin C levels in extended families with type 2 diabetes. Diabetes 2006, 55:3358-65.
  • [26]Chen G, Adeyemo AA, Zhou J, Chen Y, Doumatey A, Lashley K, et al.: A genome-wide search for linkage to renal function phenotypes in West Africans with type 2 diabetes. Am J Kidney Dis 2007, 49:394-400.
  • [27]Puppala S, Arya R, Thameem F, Arar NH, Bhandari K, Lehman DM, et al.: Genotype by diabetes interaction effects on the detection of linkage of glomerular filtration rate to a region on chromosome 2q in Mexican Americans. Diabetes 2007, 56:2818-28.
  • [28]Mottl AK, Vupputuri S, Cole SA, Almasy L, Göring HH, Diego VP, et al.: Linkage analysis of glomerular filtration rate in American Indians. Kidney Int 2008, 74:1185-91.
  • [29]Freedman BI, Bowden DW, Rich SS, Xu J, Wagenknecht LE, Ziegler J, et al.: Genome-wide linkage scans for renal function and albuminuria in Type 2 diabetes mellitus: the Diabetes Heart Study. Diabet Med 2008, 25:268-76.
  • [30]Schelling JR, Abboud HE, Nicholas SB, Pahl MV, Sedor JR, Adler SG, et al.: Genome-wide scan for estimated glomerular filtration rate in multi-ethnic diabetic populations: the Family Investigation of Nephropathy and Diabetes (FIND). Diabetes 2008, 57:235-43.
  • [31]Thameem F, Puppala S, Schneider J, Bhandari B, Arya R, Arar NH, et al.: The Gly(972)Arg variant of Human Insulin Receptor Substrate 1 (IRS1) gene is associated with variation in Glomerular Filtration Rate (GFR) likely through impaired insulin receptor signaling. Diabetes 2012, 61:2385-93.
  • [32]Park H, Kim HJ, Lee S, Yoo YJ, Ju YS, Lee JE, et al.: A family-based association study after genome-wide linkage analysis identified two genetic loci for renal function in a Mongolian population. Kidney Int 2013, 83:285-92.
  • [33]Thameem F, Igo RP Jr, Freedman BI, Langefeld C, Hanson RL, Schelling JR, et al.: A genome-wide search for linkage of estimated glomerular filtration rate (eGFR) in the Family Investigation of Nephropathy and Diabetes (FIND). PLoS One 2013, 8:e81888.
  • [34]Palmer ND, Freedman BI: Diabetic nephropathy: FRMD3 in diabetic nephropathy–guilt by association. Nat Rev Nephrol 2013, 9:313-4.
  • [35]Martini S, Nair V, Patel SR, Eichinger F, Nelson RG, Weil EJ, et al.: From single nucleotide polymorphism to transcriptional mechanism: a model for FRMD3 in diabetic nephropathy. Diabetes 2013, 62:2605-12.
  • [36]Lamb EJ, Tomson CR, Roderick v: Clinical Sciences Reviews Committee of the Association for Clinical Biochemistry: Estimating kidney function in adults using formulae. Ann Clin Biochem 2005, 42:321-45.
  文献评价指标  
  下载次数:22次 浏览次数:37次