期刊论文详细信息
Cell Division
Identification of new cell size control genes in S. cerevisiae
Brandt L Schneider2  Jessica Stilwell1  Anthony McDowell2  Thivakorn Kasemsri2  Lesley Abraham1  Jill Wright2  Hui Hua2  Huzefa Dungrawala2 
[1] Texas Tech University, Howard Hughes Medical Institute, Lubbock, TX, USA;Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th St Rm. 5C119, Lubbock, TX, 79430, USA
关键词: Cyclins;    Growth;    Cell size;    Cell cycle;    Yeast;   
Others  :  790987
DOI  :  10.1186/1747-1028-7-24
 received in 2012-09-19, accepted in 2012-12-04,  发布年份 2012
PDF
【 摘 要 】

Cell size homeostasis is a conserved attribute in many eukaryotic species involving a tight regulation between the processes of growth and proliferation. In budding yeast S. cerevisiae, growth to a “critical cell size” must be achieved before a cell can progress past START and commit to cell division. Numerous studies have shown that progression past START is actively regulated by cell size control genes, many of which have implications in cell cycle control and cancer. Two initial screens identified genes that strongly modulate cell size in yeast. Since a second generation yeast gene knockout collection has been generated, we screened an additional 779 yeast knockouts containing 435 new ORFs (~7% of the yeast genome) to supplement previous cell size screens. Upon completion, 10 new strong size mutants were identified: nine in log-phase cells and one in saturation-phase cells, and 97% of the yeast genome has now been screened for cell size mutations. The majority of the logarithmic phase size mutants have functions associated with translation further implicating the central role of growth control in the cell division process. Genetic analyses suggest ECM9 is directly associated with the START transition. Further, the small (whi) mutants mrpl49Δ and cbs1Δ are dependent on CLN3 for cell size effects. In depth analyses of new size mutants may facilitate a better understanding of the processes that govern cell size homeostasis.

【 授权许可】

   
2012 Dungrawala et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705005525697.pdf 916KB PDF download
Figure 3. 89KB Image download
Figure 2. 79KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Cook M, Tyers M: Size control goes global. Curr Opin Biotechnol 2007, 18:341-350.
  • [2]Leevers SJ, McNeill H: Controlling the size of organs and organisms. Curr Opin Cell Biol 2005, 17:604-609.
  • [3]Edgar BA, Kim KJ: Cell biology. Sizing up the cell. Science 2009, 325:158-159.
  • [4]Jorgensen P, Tyers M: How cells coordinate growth and division. Current biology: CB 2004, 14:R1014-R1027.
  • [5]Johnston GC, Pringle JR, Hartwell LH: Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 1977, 105:79-98.
  • [6]Hartwell LH: Saccharomyces cerevisiae cell cycle. Bacteriol Rev 1974, 38:164-198.
  • [7]Pardee AB: A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A 1974, 71:1286-1290.
  • [8]Hartwell LH, Culotti J, Pringle JR, Reid BJ: Genetic control of the cell division cycle in yeast. Science 1974, 183:46-51.
  • [9]Tzur A, Kafri R, LeBleu VS, Lahav G, Kirschner MW: Cell growth and size homeostasis in proliferating animal cells. Science 2009, 325:167-171.
  • [10]Killander D, Zetterberg A: Quantitative Cytochemical Studies on Interphase Growth. I. Determination of DNA, Rna and Mass Content of Age Determined Mouse Fibroblasts in Vitro and of Intercellular Variation in Generation Time. Exp Cell Res 1965, 38:272-284.
  • [11]Zetterberg A, Killander D: Quantitative cytochemical studies on interphase growth. II. Derivation of synthesis curves from the distribution of DNA, RNA and mass values of individual mouse fibroblasts in vitro. Exp Cell Res 1965, 39:22-32.
  • [12]Elliott SG, McLaughlin CS: Rate of macromolecular synthesis through the cell cycle of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1978, 75:4384-4388.
  • [13]Rupes I: Checking cell size in yeast. Trends in genetics: TIG 2002, 18:479-485.
  • [14]Turner JJ, Ewald JC, Skotheim JM: Cell size control in yeast. Current biology: CB 2012, 22:R350-R359.
  • [15]Fantes PA, Grant WD, Pritchard RH, Sudbery PE, Wheals AE: The regulation of cell size and the control of mitosis. J Theor Biol 1975, 50:213-244.
  • [16]Wells WA: Does size matter? J Cell Biol 2002, 158:1156-1159.
  • [17]Dolznig H, Grebien F, Sauer T, Beug H, Mullner EW: Evidence for a size-sensing mechanism in animal cells. Nat Cell Biol 2004, 6:899-905.
  • [18]Grebien F, Dolznig H, Beug H, Mullner EW: Cell size control: new evidence for a general mechanism. Cell Cycle 2005, 4:418-421.
  • [19]Cooper S: Control and maintenance of mammalian cell size. BMC Cell Biol 2004, 5:35. BioMed Central Full Text
  • [20]Conlon I, Raff M: Differences in the way a mammalian cell and yeast cells coordinate cell growth and cell-cycle progression. J Biol 2003, 2:7. BioMed Central Full Text
  • [21]Nurse P, Thuriaux P, Nasmyth K: Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Molecular & general genetics: MGG 1976, 146:167-178.
  • [22]Nash R, Tokiwa G, Anand S, Erickson K, Futcher AB: The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J 1988, 7:4335-4346.
  • [23]Cross FR: DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae. Mol Cell Biol 1988, 8:4675-4684.
  • [24]Nurse P: Genetic control of cell size at cell division in yeast. Nature 1975, 256:547-551.
  • [25]Tyers M, Tokiwa G, Nash R, Futcher B: The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J 1992, 11:1773-1784.
  • [26]Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M: Systematic identification of pathways that couple cell growth and division in yeast. Science 2002, 297:395-400.
  • [27]Zhang J, Schneider C, Ottmers L, Rodriguez R, Day A, Markwardt J, Schneider BL: Genomic Scale Mutant Hunt Identifies Cell Size Homeostasis Genes in S. cerevisiae. Current biology: CB 2002, 12:1992-2001.
  • [28]Tyers M, Tokiwa G, Futcher B: Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J 1993, 12:1955-1968.
  • [29]Di Como CJ, Chang H, Arndt KT: Activation of CLN1 and CLN2 G1 cyclin gene expression by BCK2. Mol Cell Biol 1995, 15:1835-1846.
  • [30]Epstein CB, Cross FR: Genes that can bypass the CLN requirement for Saccharomyces cerevisiae cell cycle START. Mol Cell Biol 1994, 14:2041-2047.
  • [31]Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, Dewar D, Rupes I, Andrews B, Tyers M: CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 2004, 117:899-913.
  • [32]de Bruin RA, McDonald WH, Kalashnikova TI, Yates J 3rd, Wittenberg C: Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 2004, 117:887-898.
  • [33]Nasmyth K, Dirick L: The role of SWI4 and SWI6 in the activity of G1 cyclins in yeast. Cell 1991, 66:995-1013.
  • [34]Alberghina L, Smeraldi C, Ranzi BM, Porro D: Control by nutrients of growth and cell cycle progression in budding yeast, analyzed by double-tag flow cytometry. J Bacteriol 1998, 180:3864-3872.
  • [35]Johnston GC, Ehrhardt CW, Lorincz A, Carter BL: Regulation of cell size in the yeast Saccharomyces cerevisiae. J Bacteriol 1979, 137:1-5.
  • [36]Tyson CB, Lord PG, Wheals AE: Dependency of size of Saccharomyces cerevisiae cells on growth rate. J Bacteriol 1979, 138:92-98.
  • [37]Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M: A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 2004, 18:2491-2505.
  • [38]Schneider BL, Zhang J, Markwardt J, Tokiwa G, Volpe T, Honey S, Futcher B: Growth rate and cell size modulate the synthesis of, and requirement for, G1-phase cyclins at start. Mol Cell Biol 2004, 24:10802-10813.
  • [39]Hoose SA, Rawlings JA, Kelly MM, Leitch MC, Ababneh QO, Robles JP, Taylor D, Hoover EM, Hailu B, McEnery KA, et al.: A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division. PLoS Genet 2012, 8:e1002590.
  • [40]Bernstein KA, et al.: Ribosome biogenesis is sensed at the Start cell cycle checkpoint. Mol Biol Cell 2007, 18(3):953-64.
  • [41]Tokiwa G, Tyers M, Volpe T, Futcher B: Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast. Nature 1994, 371:342-345.
  • [42]Flick K, Chapman-Shimshoni D, Stuart D, Guaderrama M, Wittenberg C: Regulation of cell size by glucose is exerted via repression of the CLN1 promoter [published erratum appears in Mol Cell Biol 1998 Jul;18(7):4407]. Mol Cell Biol 1998, 18:2492-2501.
  • [43]Stuart D, Wittenberg C: CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes Dev 1995, 9:2780-2794.
  • [44]Polymenis M, Schmidt EV: Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev 1997, 11:2522-2531.
  • [45]Fontana L, Partridge L, Longo VD: Extending healthy life span–from yeast to humans. Science 2010, 328:321-326.
  • [46]Schaefer JB, Breeden LL: RB from a bud's eye view. Cell 2004, 117:849-850.
  • [47]Wang H, Carey LB, Cai Y, Wijnen H, Futcher B: Recruitment of Cln3 Cyclin to Promoters Controls Cell Cycle Entry via Histone Deacetylase and Other Targets. PLoS Biol 2009, 7:e1000189.
  • [48]Cooper K: Rb, whi it's not just for metazoans anymore. Oncogene 2006, 25:5228-5232.
  • [49]Zhou P, Jiang W, Zhang YJ, Kahn SM, Schieren I, Santella RM, Weinstein IB: Antisense to cyclin D1 inhibits growth and reverses the transformed phenotype of human esophageal cancer cells. Oncogene 1995, 11:571-580.
  • [50]Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF, Sherr CJ: Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 1993, 7:1559-1571.
  • [51]Kerkhoff E, Ziff EB: Cyclin D2 and Ha-Ras transformed rat embryo fibroblasts exhibit a novel deregulation of cell size control and early S phase arrest in low serum. EMBO J 1995, 14:1892-1903.
  • [52]Ohtsubo M, Roberts JM: Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 1993, 259:1908-1912.
  • [53]Zacharek SJ, Xiong Y, Shumway SD: Negative regulation of TSC1-TSC2 by mammalian D-type cyclins. Cancer Res 2005, 65:11354-11360.
  • [54]Classon M, Salama S, Gorka C, Mulloy R, Braun P, Harlow E: Combinatorial roles for pRB, p107, and p130 in E2F-mediated cell cycle control. Proc Natl Acad Sci U S A 2000, 97:10820-10825.
  • [55]Herrera RE, Sah VP, Williams BO, Makela TP, Weinberg RA, Jacks T: Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts. Mol Cell Biol 1996, 16:2402-2407.
  • [56]Fang SC, de los Reyes C, Umen JG: Cell size checkpoint control by the retinoblastoma tumor suppressor pathway. PLoS Genet 2006, 2:167.
  • [57]Neufeld TP, de la Cruz AF, Johnston LA, Edgar BA: Coordination of growth and cell division in the Drosophila wing. Cell 1998, 93:1183-1193.
  • [58](http://www.yeastgenome.org/cache/genomeSnapshot.html) ScGS
  • [59]Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, et al.: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999, 285:901-906.
  • [60]Fisk DG, Ball CA, Dolinski K, Engel SR, Hong EL, Issel-Tarver L, Schwartz K, Sethuraman A, Botstein D, Cherry JM: Saccharomyces cerevisiae S288C genome annotation: a working hypothesis. Yeast 2006, 23:857-865.
  • [61]Yang J, Dungrawala H, Hua H, Manukyan A, Abraham L, Lane W, Mead H, Wright J, Schneider BL: Cell size and growth rate are major determinants of replicative lifespan. Cell Cycle 2011, 10:144-155.
  • [62]Nash RS, Volpe T, Futcher B: Isolation and characterization of WHI3, a size-control gene of Saccharomyces cerevisiae. Genetics 2001, 157:1469-1480.
  • [63]Manukyan A, Zhang J, Thippeswamy U, Yang J, Zavala N, Mudannayake MP, Asmussen M, Schneider C, Schneider BL: Ccr4 alters cell size in yeast by modulating the timing of CLN1 and CLN2 expression. Genetics 2008, 179:345-357.
  • [64]Guo J, Bryan BA, Polymenis M: Nutrient-specific effects in the coordination of cell growth with cell division in continuous cultures of Saccharomyces cerevisiae. Arch Microbiol 2004, 182:326-330.
  • [65]Planta RJ, Mager WH: The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast 1998, 14:471-477.
  • [66]Krause-Buchholz U, Schobel K, Lauffer S, Rodel G: Saccharomyces cerevisiae translational activator Cbs1p is associated with translationally active mitochondrial ribosomes. Biol Chem 2005, 386:407-415.
  • [67]Rohde JR, Bastidas R, Puria R, Cardenas ME: Nutritional control via Tor signaling in Saccharomyces cerevisiae. Curr Opin Microbiol 2008, 11:153-160.
  • [68]Fingar DC, Salama S, Tsou C, Harlow E, Blenis J: Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 2002, 16:1472-1487.
  • [69]Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP: Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 2000, 14:2712-2724.
  • [70]Kikuchi Y, Mizuuchi E, Nogami S, Morishita S, Ohya Y: Involvement of Rho-type GTPase in control of cell size in Saccharomyces cerevisiae. FEMS Yeast Res 2007, 7:569-578.
  • [71]Koch C, Wollmann P, Dahl M, Lottspeich F: A role for Ctr9p and Paf1p in the regulation G1 cyclin expression in yeast. Nucleic Acids Res 1999, 27:2126-2134.
  • [72]Lussier M, White AM, Sheraton J, di Paolo T, Treadwell J, Southard SB, Horenstein CI, Chen-Weiner J, Ram AF, Kapteyn JC, et al.: Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 1997, 147:435-450.
  • [73]Dirick L, Bohm T, Nasmyth K: Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. EMBO J 1995, 14:4803-4813.
  • [74]Cross FR: Starting the cell cycle: what's the point? Curr Opin Cell Biol 1995, 7:790-797.
  • [75]Futcher B: Cyclins and the wiring of the yeast cell cycle. Yeast 1996, 12:1635-1646.
  • [76]Dirick L, Nasmyth K: Positive feedback in the activation of G1 cyclins in yeast. Nature 1991, 351:754-757.
  • [77]Radcliffe P, Trevethick J, Tyers M, Sudbery P: Deregulation of CLN1 and CLN2 in the Saccharomyces cerevisiae whi2 mutant. Yeast 1997, 13:707-715.
  • [78]Ogas J, Andrews BJ, Herskowitz I: Transcriptional activation of CLN1, CLN2, and a putative new G1 cyclin (HCS26) by SWI4, a positive regulator of G1-specific transcription. Cell 1991, 66:1015-1026.
  • [79]Cvrckova F, Nasmyth K: Yeast G1 cyclins CLN1 and CLN2 and a GAP-like protein have a role in bud formation. EMBO J 1993, 12:5277-5286.
  • [80]Bloom J, Cross FR: Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 2007, 8:149-160.
  • [81]Niu W, Li Z, Zhan W, Iyer VR, Marcotte EM: Mechanisms of cell cycle control revealed by a systematic and quantitative overexpression screen in S. cerevisiae. PLoS Genet 2008, 4:e1000120.
  • [82]Schneider BL, Patton EE, Lanker S, Mendenhall MD, Wittenberg C, Futcher B, Tyers M: Yeast G1 cyclins are unstable in G1 phase. Nature 1998, 395:86-89.
  • [83]Tyers M, Futcher B: Far1 and Fus3 link the mating pheromone signal transduction pathway to three G1-phase Cdc28 kinase complexes [published erratum appears in Mol Cell Biol 1994 Mar;14(3):2222]. Mol Cell Biol 1993, 13:5659-5669.
  • [84]Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK: Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 2005, 310:1193-1196.
  • [85]Steffen KK, McCormick MA, Pham KM, Mackay VL, Delaney JR, Murakami CJ, Kaeberlein M, Kennedy BK: Ribosome Deficiency Protects Against ER Stress in Saccharomyces cerevisiae. Genetics 2012.
  • [86]Ausubel FM: Current protocols in molecular biology. Brooklyn, N. Y: Media, Pa.: Greene Publishing Associates; 1987.
  文献评价指标  
  下载次数:17次 浏览次数:5次