期刊论文详细信息
Journal of Neuroinflammation
The impact of single and pairwise Toll-like receptor activation on neuroinflammation and neurodegeneration
Seija Lehnardt3  Eckart Schott1  Christina Krüger2  Paul Dembny2  Katja Derkow2  Karen Rosenberger2 
[1] Department of Hepatology and Gastroenterology, Charité-Universitaetsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany;Department of Neurology, Charité-Universitaetsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany;Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitaetsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
关键词: Pairwise TLR activation;    Neuroinflammation;    Neurodegeneration;    Microglia;    Toll-like receptors;    Cytokines;    Chemokines;   
Others  :  1150725
DOI  :  10.1186/s12974-014-0166-7
 received in 2014-05-05, accepted in 2014-09-09,  发布年份 2014
PDF
【 摘 要 】

Background

Toll-like receptors (TLRs) enable innate immune cells to respond to pathogen- and host-derived molecules. The central nervous system (CNS) exhibits most of the TLRs identified with predominant expression in microglia, the major immune cells of the brain. Although individual TLRs have been shown to contribute to CNS disorders, the consequences of multiple activated TLRs on the brain are unclear. We therefore systematically investigated and compared the impact of sole and pairwise TLR activation on CNS inflammation and injury.

Methods

Selected TLRs expressed in microglia and neurons were stimulated with their specific TLR ligands in varying combinations. Cell cultures were then analyzed by immunocytochemistry, FlowCytomix, and ELISA. To determine neuronal injury and neuroinflammation in vivo, C57BL/6J mice were injected intrathecally with TLR agonists. Subsequently, brain sections were analyzed by quantitative real-time PCR and immunohistochemistry.

Results

Simultaneous stimulation of TLR4 plus TLR2, TLR4 plus TLR9, and TLR2 plus TLR9 in microglia by their respective specific ligands results in an increased inflammatory response compared to activation of the respective single TLR in vitro. In contrast, additional activation of TLR7 suppresses the inflammatory response mediated by the respective ligands for TLR2, TLR4, or TLR9 up to 24 h, indicating that specific combinations of activated TLRs individually modulate the inflammatory response. Accordingly, the composition of the inflammatory response pattern generated by microglia varies depending on the identity and combination of the activated TLRs engaged. Likewise, neuronal injury occurs in response to activation of only selected TLRs and TLR combinations in vitro. Activation of TLR2, TLR4, TLR7, and TLR9 in the brain by intrathecal injection of the respective TLR ligand into C57BL/6J mice leads to specific expression patterns of distinct TLR mRNAs in the brain and causes influx of leukocytes and inflammatory mediators into the cerebrospinal fluid to a variable extent. Also, the intensity of the inflammatory response and neurodegenerative effects differs according to the respective activated TLR and TLR combinations used in vivo.

Conclusions

Sole and pairwise activation of TLRs modifies the pattern and extent of inflammation and neurodegeneration in the CNS, thereby enabling innate immunity to take account of the CNS diseases¿ diversity.

【 授权许可】

   
2014 Rosenberger et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405214750660.pdf 2091KB PDF download
Figure 8. 108KB Image download
Figure 7. 115KB Image download
Figure 6. 78KB Image download
Figure 5. 74KB Image download
Figure 4. 100KB Image download
Figure 3. 54KB Image download
Figure 2. 121KB Image download
Figure 1. 130KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Kawai T, Akira S: The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010, 11:373-384.
  • [2]Broz P, Monack DM: Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol 2013, 13:551-565.
  • [3]Lee H, Lee S, Cho IH, Lee SJ: Toll-like receptors: sensor molecules for detecting damage to the nervous system. Curr Protein Pept Sci 2013, 14:33-42.
  • [4]Owens T: Toll-like receptors in neurodegeneration. Curr Top Microbiol Immunol 2009, 336:105-120.
  • [5]Bsibsi M, Ravid R, Gveric D, van Noort JM: Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 2002, 61:1013-1021.
  • [6]Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP: TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 2005, 175:4320-4330.
  • [7]Lehmann SM, Rosenberger K, Kruger C, Habbel P, Derkow K, Kaul D, Rybak A, Brandt C, Schott E, Wulczyn FG, Lehnardt S: Extracellularly delivered single-stranded viral RNA causes neurodegeneration dependent on TLR7. J Immunol 2012, 189:1448-1458.
  • [8]Kaul D, Habbel P, Derkow K, Kruger C, Franzoni E, Wulczyn FG, Bereswill S, Nitsch R, Schott E, Veh R, Naumann T, Lehnardt S: Expression of Toll-like receptors in the developing brain. PLoS One 2012, 7:e37767.
  • [9]Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD, Siler DA, Chigurupati S, Ouyang X, Magnus T, Camandola S, Mattson MP: Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 2007, 104:13798-13803.
  • [10]Kim Y, Zhou P, Qian L, Chuang JZ, Lee J, Li C, Iadecola C, Nathan C, Ding A: MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J Exp Med 2007, 204:2063-2074.
  • [11]Ziegler G, Harhausen D, Schepers C, Hoffmann O, Rohr C, Prinz V, Konig J, Lehrach H, Nietfeld W, Trendelenburg G: TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun 2007, 359:574-579.
  • [12]Mishra BB, Gundra UM, Teale JM: Expression and distribution of Toll-like receptors 11-13 in the brain during murine neurocysticercosis. J Neuroinflammation 2008, 5:53. BioMed Central Full Text
  • [13]Hanke ML, Kielian T: Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 2011, 121:367-387.
  • [14]Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K: Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 2006, 129:3006-3019.
  • [15]Weber JR, Tuomanen EI: Cellular damage in bacterial meningitis: an interplay of bacterial and host driven toxicity. J Neuroimmunol 2007, 184:45-52.
  • [16]Lehmann SM, Kruger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, Habbel P, Kälin R, Franzoni E, Rybak A, Nguyen D, Veh R, Ninnemann O, Peters O, Nitsch R, Heppner FL, Golenbock D, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S: An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 2012, 15:827-835.
  • [17]Boje KM, Arora PK: Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 1992, 587:250-256.
  • [18]Lehnardt S, Schott E, Trimbuch T, Laubisch D, Krueger C, Wulczyn G, Nitsch R, Weber JR: A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci 2008, 28:2320-2331.
  • [19]Hoffmann O, Braun JS, Becker D, Halle A, Freyer D, Dagand E, Lehnardt S, Weber JR: TLR2 mediates neuroinflammation and neuronal damage. J Immunol 2007, 178:6476-6481.
  • [20]Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T: Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 2003, 100:8514-8519.
  • [21]Rieu I, Powers SJ: Real-time quantitative RT-PCR: design, calculations, and statistics. Plant Cell 2009, 21:1031-1033.
  • [22]Olson JK, Miller SD: Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 2004, 173:3916-3924.
  • [23]Ebert S, Gerber J, Bader S, Muhlhauser F, Brechtel K, Mitchell TJ, Nau R: Dose-dependent activation of microglial cells by Toll-like receptor agonists alone and in combination. J Neuroimmunol 2005, 159:87-96.
  • [24]Bessler WG, Johnson RB, Wiesmuller K, Jung G: B-lymphocyte mitogenicity in vitro of a synthetic lipopeptide fragment derived from bacterial lipoprotein. Hoppe Seylers Z Physiol Chem 1982, 363:767-770.
  • [25]Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S: Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 2002, 169:10-14.
  • [26]Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S: Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 2002, 169:6668-6672.
  • [27]Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, Hoshino K, Takeuchi O, Kobayashi M, Fujita T, Takeda K, Akira S: Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 2002, 420:324-329.
  • [28]Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I, Nitsch R, Weber JR, Golenbock DT, Vartanian T: A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J Immunol 2006, 177:583-592.
  • [29]Iliev AI, Stringaris AK, Nau R, Neumann H: Neuronal injury mediated via stimulation of microglial toll-like receptor-9 (TLR9). Faseb J 2004, 18:412-414.
  • [30]Lehnardt S, Wennekamp J, Freyer D, Liedtke C, Krueger C, Nitsch R, Bechmann I, Weber JR, Henneke P: TLR2 and caspase-8 are essential for group B Streptococcus-induced apoptosis in microglia. J Immunol 2007, 179:6134-6143.
  • [31]Bottcher T, von Mering M, Ebert S, Meyding-Lamade U, Kuhnt U, Gerber J, Nau R: Differential regulation of Toll-like receptor mRNAs in experimental murine central nervous system infections. Neurosci Lett 2003, 344:17-20.
  • [32]Henneke P, Takeuchi O, Malley R, Lien E, Ingalls RR, Freeman MW, Mayadas T, Nizet V, Akira S, Kasper DL, Golenbock DT: Cellular activation, phagocytosis, and bactericidal activity against group B streptococcus involve parallel myeloid differentiation factor 88-dependent and independent signaling pathways. J Immunol 2002, 169:3970-3977.
  • [33]Nicolle D, Fremond C, Pichon X, Bouchot A, Maillet I, Ryffel B, Quesniaux VJ: Long-term control of Mycobacterium bovis BCG infection in the absence of Toll-like receptors (TLRs): investigation of TLR2-, TLR6-, or TLR2-TLR4-deficient mice. Infect Immun 2004, 72:6994-7004.
  • [34]Ransohoff RM, Kivisakk P, Kidd G: Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 2003, 3:569-581.
  • [35]Kono H, Rock KL: How dying cells alert the immune system to danger. Nat Rev Immunol 2008, 8:279-289.
  • [36]Lehnardt S, Lehmann S, Kaul D, Tschimmel K, Hoffmann O, Cho S, Krueger C, Nitsch R, Meisel A, Weber JR: Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol 2007, 190:28-33.
  • [37]Koedel U, Angele B, Rupprecht T, Wagner H, Roggenkamp A, Pfister HW, Kirschning CJ: Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J Immunol 2003, 170:438-444.
  • [38]Sato S, Nomura F, Kawai T, Takeuchi O, Muhlradt PF, Takeda K, Akira S: Synergy and cross-tolerance between toll-like receptor (TLR) 2- and TLR4-mediated signaling pathways. J Immunol 2000, 165:7096-7101.
  • [39]Beutler E, Gelbart T, West C: Synergy between TLR2 and TLR4: a safety mechanism. Blood Cells Mol Dis 2001, 27:728-730.
  • [40]Bagchi A, Herrup EA, Warren HS, Trigilio J, Shin HS, Valentine C, Hellman J: MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. J Immunol 2007, 178:1164-1171.
  • [41]Gao JJ, Xue Q, Papasian CJ, Morrison DC: Bacterial DNA and lipopolysaccharide induce synergistic production of TNF-alpha through a post-transcriptional mechanism. J Immunol 2001, 166:6855-6860.
  • [42]Gao JJ, Zuvanich EG, Xue Q, Horn DL, Silverstein R, Morrison DC: Cutting edge: bacterial DNA and LPS act in synergy in inducing nitric oxide production in RAW 264.7 macrophages. J Immunol 1999, 163:4095-4099.
  • [43]Blanco P, Palucka AK, Pascual V, Banchereau J: Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 2008, 19:41-52.
  • [44]Wang J, Shao Y, Bennett TA, Shankar RA, Wightman PD, Reddy LG: The functional effects of physical interactions among Toll-like receptors 7, 8, and 9. J Biol Chem 2006, 281:37427-37434.
  • [45]Berghofer B, Haley G, Frommer T, Bein G, Hackstein H: Natural and synthetic TLR7 ligands inhibit CpG-A- and CpG-C-oligodeoxynucleotide-induced IFN-alpha production. J Immunol 2007, 178:4072-4079.
  • [46]Marshall JD, Heeke DS, Gesner ML, Livingston B, Van Nest G: Negative regulation of TLR9-mediated IFN-alpha induction by a small-molecule, synthetic TLR7 ligand. J Leukoc Biol 2007, 82:497-508.
  • [47]Butchi NB, Du M, Peterson KE: Interactions between TLR7 and TLR9 agonists and receptors regulate innate immune responses by astrocytes and microglia. Glia 2010, 58:650-664.
  • [48]Hailer NP, Jarhult JD, Nitsch R: Resting microglial cells in vitro: analysis of morphology and adhesion molecule expression in organotypic hippocampal slice cultures. Glia 1996, 18:319-331.
  • [49]Tauber SC, Ebert S, Weishaupt JH, Reich A, Nau R, Gerber J: Stimulation of Toll-like receptor 9 by chronic intraventricular unmethylated cytosine-guanine DNA infusion causes neuroinflammation and impaired spatial memory. J Neuropathol Exp Neurol 2009, 68:1116-1124.
  • [50]Yang QW, Lu FL, Zhou Y, Wang L, Zhong Q, Lin S, Xiang J, Li JC, Fang CQ, Wang JZ: HMBG1 mediates ischemia-reperfusion injury by TRIF-adaptor independent Toll-like receptor 4 signaling. J Cereb Blood Flow Metab 2011, 31:593-605.
  • [51]Dalpke AH, Lehner MD, Hartung T, Heeg K: Differential effects of CpG-DNA in Toll-like receptor-2/-4/-9 tolerance and cross-tolerance. Immunology 2005, 116:203-212.
  • [52]Mallard C: Innate immune regulation by toll-like receptors in the brain. ISRN Neurol 2012, 2012:701950.
  • [53]Rosenzweig HL, Minami M, Lessov NS, Coste SC, Stevens SL, Henshall DC, Meller R, Simon RP, Stenzel-Poore MP: Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab 2007, 27:1663-1674.
  • [54]Stevens SL, Ciesielski TM, Marsh BJ, Yang T, Homen DS, Boule JL, Lessov NS, Simon RP, Stenzel-Poore MP: Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab 2008, 28:1040-1047.
  • [55]Hua F, Ma J, Ha T, Kelley J, Williams DL, Kao RL, Kalbfleisch JH, Browder IW, Li C: Preconditioning with a TLR2 specific ligand increases resistance to cerebral ischemia/reperfusion injury. J Neuroimmunol 2008, 199:75-82.
  • [56]Pradillo JM, Fernandez-Lopez D, Garcia-Yebenes I, Sobrado M, Hurtado O, Moro MA, Lizasoain I: Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. J Neurochem 2009, 109:287-294.
  • [57]Fan H, Cook JA: Molecular mechanisms of endotoxin tolerance. J Endotoxin Res 2004, 10:71-84.
  • [58]Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19:312-318.
  • [59]Henderson B, Calderwood SK, Coates AR, Cohen I, van Eden W, Lehner T, Pockley AG: Caught with their PAMPs down? The extracellular signalling actions of molecular chaperones are not due to microbial contaminants. Cell Stress Chaperones 2010, 15:123-141.
  文献评价指标  
  下载次数:65次 浏览次数:2次