期刊论文详细信息
Lipids in Health and Disease
Notable epigenetic role of hyperhomocysteinemia in atherogenesis
Gelin Xu1  Zhizhong Zhang1  Shuyu Zhou1 
[1]Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
关键词: Hyperhomocysteinemia;    DNA methylation;    Epigenetics;    Atherosclerosis;   
Others  :  1214195
DOI  :  10.1186/1476-511X-13-134
 received in 2014-07-16, accepted in 2014-08-15,  发布年份 2014
PDF
【 摘 要 】

Atherosclerosis is associated with multiple genetic and modifiable risk factors. There is an increasing body of evidences to indicate that epigenetic mechanisms also play an essential role in atherogenesis by influencing gene expression. Homocysteine is a sulfur-containing amino acid formed during methionine metabolism. Elevated plasma level of homocysteine is generally termed as hyperhomocysteinemia. As a potential risk factor for cardiovascular diseases, hyperhomocysteinemia may initiate or motivate atherogenesis by modification of DNA methylation. The underlying epigenetic mechanism is still unclear with controversial findings. This review focuses on epigenetic involvement and mechanisms of hyperhomocysteinemia in atherogenesis. Considering the potential beneficial effects of anti-homocysteinemia treatments in preventing atherosclerosis, further studies on the role of hyperhomocysteinemia in atherogenesis are warranted.

【 授权许可】

   
2014 Zhou et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150624090958377.pdf 343KB PDF download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A: An operational definition of epigenetics. Genes Dev 2009, 23:781-783.
  • [2]Singal R, Ginder GD: DNA methylation. Blood 1999, 93:4059-4070.
  • [3]Bird AP: CpG-rich islands and the function of DNA methylation. Nature 1985, 321:209-213.
  • [4]Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E, Li K, Murty VV, Schupf N, Vilain E: Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet 2008, 40:904-908.
  • [5]Shoemaker R, Deng J, Wang W, Zhang K: Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res 2010, 20:883-889.
  • [6]Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y, Pritchard JK: DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 2011, 12:R10.
  • [7]Arnett DK: SNPs located at CpG sites modulate genome-epigenome interaction. Epigenetics 2013, 8:802-806.
  • [8]Zaina S: Unraveling the DNA methylome of atherosclerosis. Curr Opin Lipidol 2014, 25:148-153.
  • [9]Newman P: Can reduced folic acid and vitamin B12 levels cause deficient DNA methylation producing mutations which initiate atherosclerosis? Med Hypotheses 1999, 53:421-424.
  • [10]Holdt LM, Teupser D: From genotype to phenotype in human atherosclerosis-recent findings. Curr Opin Lipidol 2013, 24:410.
  • [11]De Bree A, Verschuren WM, Kromhout D, Kluijtmans L, Blom HJ: Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 2002, 54:599-618.
  • [12]Collaboration HS: Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002, 288:2015-2022.
  • [13]Wald DS, Law M, Morris JK: Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 2002, 325:1202.
  • [14]Epstein FH, Welch GN, Loscalzo J: Homocysteine and atherothrombosis. N Engl J Med 1998, 338:1042-1050.
  • [15]Domagala TB, Undas A, Libura M, Szczeklik A: Pathogenesis of vascular disease in hyperhomocysteinaemia. J Cardiovasc Risk 1998, 5:239-247.
  • [16]Faraci FM, Lentz SR: Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke 2004, 35:345-347.
  • [17]Finkelstein J: The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 1998, 157:S40-S44.
  • [18]Cantoni G: The role of S-adenosylhomocysteine in the biological utilization of S-adenosylmethionine. Prog Clin Biol Res 1985, 198:47-65.
  • [19]Chiang PK, Cantoni GL: Perturbation of biochemical transmethylations by 3-deazaadenosine in vivo. Biochem Pharmacol 1979, 28:1897-1902.
  • [20]Hoffman D, Marion D, Cornatzer W, Duerre J: S-Adenosylmethionine and S-adenosylhomocystein metabolism in isolated rat liver. Effects of L-methionine, L-homocystein, and adenosine. J Biol Chem 1980, 255:10822-10827.
  • [21]Hoffman DR, Cornatzer WE, Duerre JA: Relationship between tissue levels of S-adenosylmethionine, S-adenosylhomocysteine, and transmethylation reactions. Can J Biochem 1979, 57:56-64.
  • [22]Selhub J: Homocysteine metabolism. Annu Rev Nutr 1999, 19:217-246.
  • [23]Kaul S, Zadeh AA, Shah PK: Homocysteine Hypothesis for Atherothrombotic Cardiovascular Disease: Not Validated. J Am Coll Cardiol 2006, 48:914-923.
  • [24]Wierzbicki AS: Homocysteine and cardiovascular disease: a review of the evidence. Diab Vasc Dis Res 2007, 4:143-149.
  • [25]Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers G, den Heijer M, Kluijtmans L, Van Den Heuvel LP: A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995, 10:111-113.
  • [26]Brustolin S, Giugliani R, Félix T: Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res 2010, 43:1-7.
  • [27]Weiss N, Keller C, Hoffmann U, Loscalzo J: Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia. Vasc Med 2002, 7:227-239.
  • [28]Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ: Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 2000, 275:29318-29323.
  • [29]Loehrer FM, Tschöpl M, Angst CP, Litynski P, Jäger K, Fowler B, Haefeli WE: Disturbed ratio of erythrocyte and plasma S-adenosylmethionine/ S-adenosylhomocysteine in peripheral arterial occlusive disease. Atherosclerosis 2001, 154:147-154.
  • [30]Castro R, Rivera I, Struys EA, Jansen E, Ravasco P, Camilo ME, Blom HJ, Jakobs C, de Almeida IT: Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem 2003, 49:1292-1296.
  • [31]Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A, Ballestar E, Esteller M, Zaina S: DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem 2004, 279:29147-29154.
  • [32]Devlin AM, Arning E, Bottiglieri T, Faraci FM, Rozen R, Lentz SR: Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice. Blood 2004, 103:2624-2629.
  • [33]Ehrlich M, Gama-Sosa MA, Huang L-H, Midgett RM, Kuo KC, McCune RA, Gehrke C: Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res 1982, 10:2709-2721.
  • [34]Bird AP: CpG islands as gene markers in the vertebrate nucleus. Trends Genet 1987, 3:342-347.
  • [35]Aoyama T, Okamoto T, Nagayama S, Nishijo K, Ishibe T, Yasura K, Nakayama T, Nakamura T, Toguchida J: Methylation in the core-promoter region of the chondromodulin-I gene determines the cell-specific expression by regulating the binding of transcriptional activator Sp3. J Biol Chem 2004, 279:28789-28797.
  • [36]Miranda TB, Jones PA: DNA methylation: the nuts and bolts of repression. J Cell Physiol 2007, 213:384-390.
  • [37]Turunen MP, Aavik E, Ylä-Herttuala S: Epigenetics and atherosclerosis. Biochim Biophys Acta (BBA)-General Subjects 2009, 1790:886-891.
  • [38]Wierda RJ, Geutskens SB, Jukema JW, Quax P, van den Elsen PJ: Epigenetics in atherosclerosis and inflammation. J Cell Mol Med 2010, 14:1225-1240.
  • [39]Handy DE, Castro R, Loscalzo J: Epigenetic Modifications Basic Mechanisms and Role in Cardiovascular Disease. Circulation 2011, 123:2145-2156.
  • [40]Lund G, Zaina S: Atherosclerosis: an epigenetic balancing act that goes wrong. Curr Atheroscler Rep 2011, 13:208-214.
  • [41]Baccarelli A, Ghosh S: Environmental exposures, epigenetics and cardiovascular disease. Curr Opin Clin Nutr Metab Care 2012, 15:323.
  • [42]Laukkanen MO, Mannermaa S, Hiltunen MO, Aittomäki S, Airenne K, Jänne J, Ylä-Herttuala S: Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arterioscler Thromb Vasc Biol 1999, 19:2171-2178.
  • [43]Hiltunen MO, Turunen MP, Häkkinen TP, Rutanen J, Hedman M, Mäkinen K, Turunen AM, Aalto-Setalä K, Ylä-Herttuala S: DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med 2002, 7:5-11.
  • [44]Yideng J, Jianzhong Z, Ying H, Juan S, Jinge Z, Shenglan W, Xiaoqun H, Shuren W: Homocysteine-mediated expression of SAHH, DNMTs, MBD2, and DNA hypomethylation potential pathogenic mechanism in VSMCs. DNA Cell Biol 2007, 26:603-611.
  • [45]Jiang Y, Sun T, Xiong J, Cao J, Li G, Wang S: Hyperhomocysteinemia‒mediated DNA Hypomethylation and its Potential Epigenetic Role in Rats. Acta Biochim Biophys Sin 2007, 39:657-667.
  • [46]Luo X, Xiao Y, Song F, Yang Y, Xia M, Ling W: Increased plasma S-adenosyl-homocysteine levels induce the proliferation and migration of VSMCs through an oxidative stress-ERK1/2 pathway in apoE−/−mice. Cardiovasc Res 2012, 95:241-250.
  • [47]Venkov CD, Rankin AB, Vaughan DE: Identification of Authentic Estrogen Receptor in Cultured Endothelial Cells A Potential Mechanism for Steroid Hormone Regulation of Endothelial Function. Circulation 1996, 94:727-733.
  • [48]Miller VM, Duckles SP: Vascular actions of estrogens: functional implications. Pharmacol Rev 2008, 60:210-241.
  • [49]Su J, Wang S, Hunag Y, Jinag Y: A comparative study on pathogenic effects of homocysteine and cysteine on atherosclerosis. Wei Sheng Yan Jiu 2009, 38:43-46.
  • [50]Jamaluddin MS, Yang X, Wang H: Hyperhomocysteinemia, DNA methylation and vascular disease. Clin Chem Lab Med 2007, 45:1660-1666.
  • [51]Duell PB, Malinow MR: Homocysteine: an important risk factor for atherosclerotic vascular disease. Curr Opin Lipidol 1997, 8:28-34.
  • [52]Zhang J, Liu J, Li Z, Wang L, Jiang Y, Wang S: Dysfunction of endothelial NO system originated from homocysteine-induced aberrant methylation pattern in promoter region of DDAH2 gene. Chin Med J Beijing Engl Ed 2007, 120:2132.
  • [53]Jia SJ, Lai YQ, Zhao M, Gong T, Zhang B: Homocysteine-induced hypermethylation of DDAH2 promoter contributes to apoptosis of endothelial cells. Die Pharmazie-An Int J Pharm Sci 2013, 68:282-286.
  • [54]Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A, John S, Smith RS: Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 2001, 10:433.
  • [55]Yi-Deng J, Tao S, Hui-Ping Z, Jian-Tuan X, Jun C, Gui-Zhong L, Shu-Ren W: Folate and ApoE DNA methylation induced by homocysteine in human monocytes. DNA Cell Biol 2007, 26:737-744.
  • [56]Yideng J, Zhihong L, Jiantuan X, Jun C, Guizhong L, Shuren W: Homocysteine-mediated PPARα, γ DNA methylation and its potential pathogenic mechanism in monocytes. DNA Cell Biol 2008, 27:143-150.
  • [57]Wang J, Jiang Y, Yang A, Sun W, Ma C, Ma S, Gong H, Shi Y, Wei J: Hyperhomocysteinemia-Induced Monocyte Chemoattractant Protein-1 Promoter DNA Methylation by Nuclear Factor-κB/DNA Methyltransferase 1 in Apolipoprotein E–Deficient Mice. Bio Res Open Access 2013, 2:118-127.
  • [58]Liang Y, Yang X, Ma L, Cai X, Wang L, Yang C, Li G, Zhang M, Sun W, Jiang Y: Homocysteine-mediated cholesterol efflux via ABCA1 and ACAT1 DNA methylation in THP-1 monocyte-derived foam cells. Acta Biochim Biophys Sin 2013, 45:220-228.
  • [59]Zaina S, Lindholm MW, Lund G: Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia? J Nutr 2005, 135:5-8.
  • [60]Sharma P, Kumar J, Garg G, Kumar A, Patowary A, Karthikeyan G, Ramakrishnan L, Brahmachari V, Sengupta S: Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol 2008, 27:357-365.
  • [61]Sharma P, Senthilkumar R, Brahmachari V, Sundaramoorthy E, Mahajan A, Sharma A, Sengupta S: Mining literature for a comprehensive pathway analysis: a case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids Health Dis 2006, 5:1-19.
  • [62]Ingrosso D, Perna AF: Epigenetics in hyperhomocysteinemic states. A special focus on uremia. Biochim Biophys Acta (BBA)-General Subjects 2009, 1790:892-899.
  • [63]Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM: Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462:315-322.
  • [64]Kouzarides T: Chromatin modifications and their function. Cell 2007, 128:693-705.
  • [65]Martin C, Zhang Y: The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 2005, 6:838-849.
  • [66]Jeppesen P, Turner BM: The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 1993, 74:281-289.
  • [67]Braunstein M, Rose A, Holmes S, Allis C, Broach J: Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 1993, 7:592-604.
  • [68]Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001, 410:116-120.
  • [69]Kim GH, Ryan JJ, Archer SL: The role of redox signaling in epigenetics and cardiovascular disease. Antioxid Redox Signal 2013, 18:1920-1936.
  • [70]Findeisen HM, Kahles FK, Bruemmer D: Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis. Curr Atheroscler Rep 2013, 15:1-8.
  • [71]Fernandez AZ, Siebel AL, El-Osta A: Atherogenic factors and their epigenetic relationships. Int J Vasc Med 2010., 2010http://www.hindawi.com/journals/ijvm/2010/437809/ webcite
  • [72]Esse R, Florindo C, Imbard A, Rocha M, de Vriese A, Smulders Y, Teerlink T, Tavares de Almeida I, Castro R, Blom H: Global protein and histone arginine methylation are affected in a tissue-specific manner in a rat model of diet-induced hyperhomocysteinemia. Biochim Biophys Acta (BBA)-Mol Basis Dis 2013, 1832:1708-1714.
  • [73]Esse R, Imbard A, Florindo C, Rocha M, de Vriese A, Smulders Y, Teerlink T, Tavares de Almeida I, Castro R, Blom H: Protein arginine hypomethylation in a mouse model of cystathionine β-synthase deficiency. FASEB J 2014, 28:2686-2695.
  • [74]Jiang Y, Jiang J, Xiong J, Cao J, Li N, Li G, Wang S: Homocysteine-induced extracellular superoxide dismutase and its epigenetic mechanisms in monocytes. J Exp Biol 2008, 211:911-920.
  • [75]Jin Y, Amaral A, McCann A, Brennan L: Homocysteine levels impact directly on epigenetic reprogramming in astrocytes. Neurochem Int 2011, 58:833-838.
  • [76]Pizzolo F, Blom HJ, Choi SW, Girelli D, Guarini P, Martinelli N, Stanzial AM, Corrocher R, Olivieri O, Friso S: Folic acid effects on S-adenosylmethionine, S-adenosylhomocysteine, and DNA methylation in patients with intermediate hyperhomocysteinemia. J Am Coll Nutr 2011, 30:11-18.
  文献评价指标  
  下载次数:2次 浏览次数:19次