期刊论文详细信息
Journal of Biomedical Science
Altered exosomal protein expression in the serum of NF-κB knockout mice following skeletal muscle ischemia-reperfusion injury
Ching-Hua Hsieh2  Chia-Jung Wu2  Siou-Ling Tzeng2  Yi-Chun Chen2  Yi-Chan Wu2  Tsu-Hsiang Lu2  Seng-Feng Jeng3  Cheng-Shyuan Rau1  Ming-Wei Lin2  Johnson Chia-Shen Yang2 
[1] Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City, Taiwan;Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Ta-Pei Road, Niao-Sung District, Kaohsiung City 833, Taiwan;Department of Plastic Surgery, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan
关键词: Proteomics;    Two-dimensional-gel electrophoresis;    NF-κB;    Exosome;    Muscle ischemia-reperfusion (I/R) injury;   
Others  :  1213943
DOI  :  10.1186/s12929-015-0147-x
 received in 2014-12-16, accepted in 2015-05-15,  发布年份 2015
PDF
【 摘 要 】

Background

The NF-κB signaling pathway plays a role in local and remote tissue damage following ischemia-reperfusion (I/R) injury to skeletal muscles. Evidence suggests that exosomes can act as intercellular communicators by transporting active proteins to remote cells and may play a role in regulating inflammatory processes. This study aimed to profile the exosomal protein expression in the serum of NF-κB knockout mice following skeletal muscle ischemia-reperfusion injury.

Results

To investigate the potential changes in protein expression mediated by NF-κB in secreted exosomes in the serum following I/R injury, the levels of circulating exosomal proteomes in C57BL/6 and NF-κB−/− mice were compared using two dimensional differential in-gel electrophoresis (2-DE), liquid chromatography tandem mass spectrometry (LC-MS/MS), and proteomic analysis. In C57BL/6 mice, the levels of circulating exosomal proteins, including complement component C3 prepropeptide, PK-120 precursor, alpha-amylase one precursor, beta-enolase isoform 1, and adenylosuccinate synthetase isozyme 1, increased following I/R injury. However, in the NF-κB−/− mice, the expression of the following was upregulated in the exosomes: protease, serine 1; glyceraldehyde-3-phosphate dehydrogenase-like isoform 1; glyceraldehyde-3-phosphate dehydrogenase; and pregnancy zone protein. In contrast, the expression of apolipoprotein B, complement component C3 prepropeptide, and immunoglobulin kappa light chain variable region was downregulated in NF-κB−/− mice. Bioinformatic annotation using the Protein Analysis Through Evolutionary Relationships (PANTHER) database revealed that the expression of the exosomal proteins that participate in metabolic processes and in biological regulation was lower in NF-κB−/− mice than in C57BL/6 mice, whereas the expression of proteins that participate in the response to stimuli, in cellular processes, and in the immune system was higher.

Conclusions

The data presented in this study suggest that NF-κB might regulate exosomal protein expression at a remote site via circulation following I/R injury.

【 授权许可】

   
2015 Yang et al.

【 预 览 】
附件列表
Files Size Format View
20150617092641329.pdf 2141KB PDF download
Fig. 7. 59KB Image download
Fig. 6. 29KB Image download
Fig. 5. 14KB Image download
Fig. 4. 29KB Image download
Fig. 3. 28KB Image download
Fig. 2. 15KB Image download
Fig. 1. 80KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Blaisdell FW. The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review. Cardiovasc Surg. 2002; 10(6):620-30.
  • [2]Walker PM. Ischemia/reperfusion injury in skeletal muscle. Ann Vasc Surg. 1991; 5(4):399-402.
  • [3]Lentsch AB, Yoshidome H, Warner RL, Ward PA, Edwards MJ. Secretory leukocyte protease inhibitor in mice regulates local and remote organ inflammatory injury induced by hepatic ischemia/reperfusion. Gastroenterology. 1999; 117(4):953-61.
  • [4]Lille ST, Lefler SR, Mowlavi A, Suchy H, Boyle EM, Farr AL et al.. Inhibition of the initial wave of NF-kappaB activity in rat muscle reduces ischemia/reperfusion injury. Muscle Nerve. 2001; 24(4):534-41.
  • [5]Park JW, Qi WN, Cai Y, Urbaniak JR, Chen LE. Proteasome inhibitor attenuates skeletal muscle reperfusion injury by blocking the pathway of nuclear factor-kappaB activation. Plast Reconstr Surg. 2007; 120(7):1808-18.
  • [6]Kim YS1, Kim JS, Kwon JS, Jeong MH, Cho JG, Park JC, Kang JC, Ahn Y: BAY 11-7082, a nuclear factor-κB inhibitor, reduces inflammation and apoptosis in a rat cardiac ischemia-reperfusion injury model. International heart journal 2010;5(5):348-353.
  • [7]Andrade-Silva AR, Ramalho FS, Ramalho LN, Saavedra-Lopes M, Jordao AA, Vanucchi H et al.. Effect of NFkappaB inhibition by CAPE on skeletal muscle ischemia-reperfusion injury. J Surg Res. 2009; 153(2):254-62.
  • [8]Suzuki T, Yamashita K, Jomen W, Ueki S, Aoyagi T, Fukai M et al.. The novel NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin, prevents local and remote organ injury following intestinal ischemia/reperfusion in rats. J Surg Res. 2008; 149(1):69-75.
  • [9]Burke M, Choksawangkarn W, Edwards N, Ostrand-Rosenberg S, Fenselau C. Exosomes from myeloid-derived suppressor cells carry biologically active proteins. J Proteome Res. 2014; 13(2):836-43.
  • [10]Yoon YJ, Kim OY, Gho YS. Extracellular vesicles as emerging intercellular communicasomes. BMB Reports 2014;47(10):531-539
  • [11]Svensson KJ, Christianson HC, Wittrup A, Bourseau-Guilmain E, Lindqvist E, Svensson LM et al.. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem. 2013; 288(24):17713-24.
  • [12]Nanbo A, Kawanishi E, Yoshida R, Yoshiyama H. Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J Virol. 2013; 87(18):10334-47.
  • [13]Hudson MB, Woodworth-Hobbs ME, Zheng B, Rahnert JA, Blount MA, Gooch JL et al.. miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export. Am J Physiol Cell Physiol. 2014; 306(6):C551-8.
  • [14]Forterre A, Jalabert A, Chikh K, Pesenti S, Euthine V, Granjon A et al.. Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation. Cell Cycle. 2014; 13(1):78-89.
  • [15]Ung TH, Madsen HJ, Hellwinkel JE, Lencioni AM, Graner MW. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Sci. 2014;105(11):1384-1392
  • [16]Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M et al.. Human T-lymphotropic Virus Type 1-infected Cells Secrete Exosomes That Contain Tax Protein. J Biol Chem. 2014; 289(32):22284-305.
  • [17]Beckham CJ, Olsen J, Yin PN, Wu CH, Ting HJ, Hagen FK et al.. Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression. J Urol. 2014; 192(2):583-92.
  • [18]Fruhbeis C, Frohlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS et al.. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013; 11(7): Article ID e1001604
  • [19]Beninson LA, Fleshner M. Exosomes: An emerging factor in stress-induced immunomodulation. Seminars Immunol. 2014;26(5):394-401.
  • [20]de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracellular Vesicles. 2012;1.
  • [21]Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014; 14(3):195-208.
  • [22]Sonoda H, Yokota-Ikeda N, Oshikawa S, Kanno Y, Yoshinaga K, Uchida K et al.. Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2009; 297(4):F1006-16.
  • [23]Salomon C, Kobayashi M, Ashman K, Sobrevia L, Mitchell MD, Rice GE. Hypoxia-induced changes in the bioactivity of cytotrophoblast-derived exosomes. PLoS One. 2013; 8(11): Article ID e79636
  • [24]Zhou H, Pisitkun T, Aponte A, Yuen PS, Hoffert JD, Yasuda H et al.. Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int. 2006; 70(10):1847-57.
  • [25]Yang JC, Wu SC, Rau CS, Chen YC, Lu TH, Wu YC et al.. TLR4/NF- kappa B-Responsive MicroRNAs and Their Potential Target Genes: A Mouse Model of Skeletal Muscle Ischemia-Reperfusion. Injury. 2015; 2015:410721.
  • [26]Rau CS, Yang JC, Chen YC, Wu CJ, Lu TH, Tzeng SL et al.. Lipopolysaccharide-induced microRNA-146a targets CARD10 and regulates angiogenesis in human umbilical vein endothelial cells. Toxicol Sci. 2014; 140(2):315-26.
  • [27]Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013; 8(8):1551-66.
  • [28]Bellisola G, Casaril M, Gabrielli GB, Caraffi M, Corrocher R. Catalase activity in human hepatocellular carcinoma (HCC). Clin Biochem. 1987; 20(6):415-7.
  • [29]Dick RA, Kwak MK, Sutter TR, Kensler TW. Antioxidative function and substrate specificity of NAD(P)H-dependent alkenal/one oxidoreductase. A new role for leukotriene B4 12-hydroxydehydrogenase/15-oxoprostaglandin 13-reductase. J Biol Chem. 2001; 276(44):40803-10.
  • [30]Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys. 2010; 501(1):116-23.
  • [31]Brass EP, Hiatt WR, Gardner AW, Hoppel CL. Decreased NADH dehydrogenase and ubiquinol-cytochrome c oxidoreductase in peripheral arterial disease. Am J Physiol Heart Circ Physiol. 2001; 280(2):H603-9.
  • [32]del Zoppo GJ. In stroke, complement will get you nowhere. Nat Med. 1999; 5(9):995-6.
  • [33]Eisenhardt SU, Schmidt Y, Karaxha G, Iblher N, Penna V, Torio-Padron N et al.. Monitoring molecular changes induced by ischemia/reperfusion in human free muscle flap tissue samples. Ann Plast Surg. 2012; 68(2):202-8.
  • [34]Yang J, Ahn HN, Chang M, Narasimhan P, Chan PH, Song YS. Complement component 3 inhibition by an antioxidant is neuroprotective after cerebral ischemia and reperfusion in mice. J Neurochem. 2013; 124(4):523-35.
  • [35]Olsson S, Stokowska A, Holmegaard L, Jood K, Blomstrand C, Pekna M et al.. Genetic variation in complement component C3 shows association with ischaemic stroke. Eur J Neurol. 2011; 18(10):1272-4.
  • [36]Mocco J, Mack WJ, Ducruet AF, Sosunov SA, Sughrue ME, Hassid BG et al.. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ Res. 2006; 99(2):209-17.
  • [37]Moon MR, Parikh AA, Pritts TA, Fischer JE, Cottongim S, Szabo C et al.. Complement component C3 production in IL-1beta-stimulated human intestinal epithelial cells is blocked by NF-kappaB inhibitors and by transfection with ser 32/36 mutant IkappaBalpha. J Surg Res. 1999; 82(1):48-55.
  • [38]Skornicka EL, Kiyatkina N, Weber MC, Tykocinski ML, Koo PH. Pregnancy zone protein is a carrier and modulator of placental protein-14 in T-cell growth and cytokine production. Cell Immunol. 2004; 232(1–2):144-56.
  • [39]Chaitanya GV, Eeka P, Munker R, Alexander JS, Babu PP. Role of cytotoxic protease granzyme-b in neuronal degeneration during human stroke. Brain Pathol. 2011; 21(1):16-30.
  • [40]Sirover MA. Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J Cell Biochem. 1997; 66(2):133-40.
  • [41]Yogalingam G, Hwang S, Ferreira JC, Mochly-Rosen D. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) phosphorylation by protein kinase Cdelta (PKCdelta) inhibits mitochondria elimination by lysosomal-like structures following ischemia and reoxygenation-induced injury. J Biol Chemist. 2013; 288(26):18947-60.
  • [42]Tanaka R, Mochizuki H, Suzuki A, Katsube N, Ishitani R, Mizuno Y et al.. Induction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in rat brain after focal ischemia/reperfusion. J Cereb Blood Flow Metab. 2002; 22(3):280-8.
  • [43]Hurt-Camejo E, Camejo G. Why are plasmatic apoB lipoproteins atherogenic? The hypothesis of response to retention. Investig Clin. 2001; 42 Suppl 1:43-73.
  • [44]Michiue T, Ishikawa T, Kawamoto O, Chen JH, Wang Q, Zhu BL et al.. Postmortem serum levels of amylase and gamma glutamyl transferase (GGT) as markers of systemic tissue damage in forensic autopsy. Legal Med. 2013; 15(2):79-84.
  • [45]Malinoski DJ, Hadjizacharia P, Salim A, Kim H, Dolich MO, Cinat M et al.. Elevated serum pancreatic enzyme levels after hemorrhagic shock predict organ failure and death. J Trauma. 2009; 67(3):445-9.
  • [46]Sokolowski A, Spormann H, Urbahn H, Letko G. Contribution of pancreatic edema and short-term ischemia to experimental acute pancreatitis in the rat. II. Behaviour of serum parameters. Zeitschrift fur experimentelle Chirurgie, Transplantation, und kunstliche Organe : Organ der Sektion Experimentelle Chirurgie der Gesellschaft fur Chirurgie der DDR. 1986; 19(6):331-9.
  • [47]Viola G, Al-Mufti RA, Sohail M, Williamson RC, Mathie RT. Nitric oxide induction in a rat model of selective pancreatic ischemia and reperfusion. Hepato-Gastroenterology. 2000; 47(35):1250-5.
  • [48]Parissis JT, Adamopoulos SN, Venetsanou KF, Karas SM, Kremastinos DT. Elevated plasma amylase levels in advanced chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy: correlation with circulating interleukin-6 activity. J Interferon Cytokine Res. 2003; 23(6):329-33.
  文献评价指标  
  下载次数:36次 浏览次数:15次