期刊论文详细信息
Italian Journal of Pediatrics
The ever-expanding conundrum of primary osteoporosis: aetiopathogenesis, diagnosis, and treatment
Maria Luisa Brandi2  Maurizio de Martino1  Salvatore Seminara1  Loredana Cavalli2  Stefano Stagi1 
[1] Health Sciences Department, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy;Department of Internal Medicine, Endocrinology Unit, University of Florence, Florence, Italy
关键词: Primary osteoporosis;    Osteoporosis;    Osteopoenia;    Fragility fractures;    Children;    Bone mineral density;   
Others  :  821589
DOI  :  10.1186/1824-7288-40-55
 received in 2014-01-24, accepted in 2014-05-27,  发布年份 2014
PDF
【 摘 要 】

In recent years, as knowledge regarding the etiopathogenetic mechanisms of bone involvement characterizing many diseases has increased and diagnostic techniques evaluating bone health have progressively improved, the problem of low bone mass/quality in children and adolescents has attracted more and more attention, and the body evidence that there are groups of children who may be at risk of osteoporosis has grown. This interest is linked to an increased understanding that a higher peak bone mass (PBM) may be one of the most important determinants affecting the age of onset of osteoporosis in adulthood. This review provides an updated picture of bone pathophysiology and characteristics in children and adolescents with paediatric osteoporosis, taking into account the major causes of primary osteoporosis (PO) and evaluating the major aspects of bone densitometry in these patients. Finally, some options for the treatment of PO will be briefly discussed.

【 授权许可】

   
2014 Stagi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712081120734.pdf 470KB PDF download
【 参考文献 】
  • [1]Bianchi ML: Osteoporosis in children and adolescents. Bone 2007, 41:486-495.
  • [2]Ma NS, Gordon CM: Pediatric osteoporosis: where are we now? J Pediatr 2012, 161:983-990.
  • [3]Pitukcheewanont P, Austin J, Chen P, Punyasavatsut N: Bone health in children and adolescents: risk factors for low bone density. Pediatr Endocrinol Rev 2013, 10:318-335.
  • [4]Colì G: To prevent the osteoporosis playing in advance. Clin Cases Miner Bone Metab 2013, 10:83-85.
  • [5]Stagi S, Lapi E, Gambineri E, Manoni C, Genuardi M, Colarusso G, Conti C, Chiarelli F, de Martino M, Azzari C: Bone density and metabolism in subjects with microdeletion of chromosome 22q11 (del22q11). Eur J Endocrinol 2010, 163:329-337.
  • [6]Gunter KB, Almstedt HC, Janz KF: Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev 2012, 40:13-21.
  • [7]Karlsson MK, Nordqvist A, Karlsson C: Physical activity increases bone mass during growth. Food Nutr Res 2008., 52doi:10.3402/fnr.v52i0.1871
  • [8]Nilsson M, Ohlsson C, Odén A, Mellström D, Lorentzon M: Increased physical activity is associated with enhanced development of peak bone mass in men: a five-year longitudinal study. J Bone Miner Res 2012, 27:1206-1214.
  • [9]Shaw NJ: Management of osteoporosis in children. Eur J Endocrinol 2008, 159(Suppl 1):S33-S39.
  • [10]Bishop N, Adami S, Ahmed SF, Antón J, Arundel P, Burren CP, Devogelaer JP, Hangartner T, Hosszú E, Lane JM, Lorenc R, Mäkitie O, Munns CF, Paredes A, Pavlov H, Plotkin H, Raggio CL, Reyes ML, Schoenau E, Semler O, Sillence DO, Steiner RD: Risedronate in children with osteogenesis imperfecta: a randomised, double-blind, placebo-controlled trial. Lancet 2013, 382:1424-1432.
  • [11]Uziel Y, Zifman E, Hashkes PJ: Osteoporosis in children: pediatric and pediatric rheumatology perspective: a review. Pediatr Rheumatol Online J 2009, 7:16. BioMed Central Full Text
  • [12]Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, Hyland JC, Körkkö J, Prockop DJ, De Paepe A, Coucke P, Symoens S, Glorieux FH, Roughley PJ, Lund AM, Kuurila-Svahn K, Hartikka H, Cohn DH, Krakow D, Mottes M, Schwarze U, Chen D, Yang K, Kuslich C, Troendle J, Dalgleish R, Byers PH: Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat 2007, 28:209-221.
  • [13]Akler G, Pikielny PR, Kots E, Ish-Shalom S, Uziel Y: Multiple vertebral fractures in a young girl: a question of treatment. Isr Med Assoc J 2010, 12:116-118.
  • [14]Roughley PJ, Rauch F, Glorieux FH: Osteogenesis imperfecta–clinical and molecular diversity. Eur Cell Mater 2003, 5:41-47.
  • [15]Sillence DO, Senn A, Danks DM: Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 1979, 16:101-116.
  • [16]Steiner RD, Adsit J, Basel D: COL1A1/2-Related Osteogenesis Imperfecta. In GeneReviews® [internet]. Edited by Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K. Seattle: University of Washington; 1993-2014.
  • [17]Van Dijk FS, Sillence DO: Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 2014, 164:1470-1481.
  • [18]Pazzaglia UE, Congiu T, Brunelli PC, Magnano L, Benetti A: The long bone deformity of osteogenesis imperfecta III: analysis of structural changes carried Out with scanning electron microscopic morphometry. Calcif Tissue Int 2013, 93:453-461.
  • [19]Baron R, Kneissel M: WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013, 19:179-192.
  • [20]Pyott SM, Tran TT, Leistritz DF, Pepin MG, Mendelsohn NJ, Temme RT, Fernandez BA, Elsayed SM, Elsobky E, Verma I, Nair S, Turner EH, Smith JD, Jarvik GP, Byers PH: WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet 2013, 92:590-597.
  • [21]Henwood MJ, Binkovitz L: Update on pediatric bone health. J Am Osteopath Assoc 2009, 109:5-12.
  • [22]Renaud A, Aucourt J, Weill J, Bigot J, Dieux A, Devisme L, Moraux A, Boutry N: Radiographic features of osteogenesis imperfecta. Insights Imaging 2013, 4:417-429.
  • [23]Foster BL, Ramnitz MS, Gafni RI, Burke AB, Boyce AM, Lee JS, Wright JT, Akintoye SO, Somerman MJ, Collins MT: Rare bone diseases and their dental, oral and craniofacial manifestations. J Dent Res 2014. Epub ahead of print
  • [24]Rauch F, Travers R, Parfitt AM, Glorieux FH: Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone 2000, 26:581-589.
  • [25]Forlino A, Cabral WA, Barnes AM, Marini JC: New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol 2011, 7:540-557.
  • [26]Rauch F, Glorieux FH: Osteogenesis imperfecta. Lancet 2004, 363:1377-1385.
  • [27]Boyde A, Travers R, Glorieux FH, Jones SJ: The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int 1999, 64:185-190.
  • [28]Traub W, Arad T, Vetter U, Weiner S: Ultrastructural studies of bones from patients with osteogenesis imperfecta. Matrix Biol 1994, 14:337-345.
  • [29]Fratzl-Zelman N, Schmidt I, Roschger P, Glorieux FH, Klaushofer K, Fratzl P, Rauch F, Wagermaier W: Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Bone 2013, 60:122-128.
  • [30]Moore MS, Minch CM, Kruse RW, Harcke HT, Jacobson L, Taylor A: The role of dual energy x-ray absorptiometry in aiding the diagnosis of pediatric osteogenesis imperfecta. Am J Orthop (Belle Mead NJ) 1998, 27:797-801.
  • [31]van der Sluis IM, de Muinck Keizer-Schrama SM: Osteoporosis in childhood: bone density of children in health and disease. J Pediatr Endocrinol Metab 2001, 14:817-832.
  • [32]Zionts LE, Nash JP, Rude R, Ross T, Stott NS: Bone mineral density in children with mild osteogenesis imperfecta. J Bone Joint Surg (Br) 1995, 77:143-147.
  • [33]Reinus WR, McAlister WH, Schranck F, Chines A, Whyte MP: Differing lumbar vertebral mineralization rates in ambulatory pediatric patients with osteogenesis imperfecta. Calcif Tissue Int 1998, 62:17-20.
  • [34]Lund AM, Mølgaard C, Müller J, Skovby F: Bone mineral content and collagen defects in osteogenesis imperfecta. Acta Paediatr 1999, 88:1083-1088.
  • [35]Cepollaro C, Gonnelli S, Pondrelli C, Montagnani A, Martini S, Bruni D, Gennari C: Osteogenesis imperfecta: bone turnover, bone density, and ultrasound parameters. Calcif Tissue Int 1999, 65:129-132.
  • [36]Castillo H, Samson-Fang L, American Academy for Cerebral Palsy and Developmental Medicine Treatment Outcomes Committee Review Panel: Effects of bisphosphonates in children with osteogenesis imperfecta: an AACPDM systematic review. Dev Med Child Neurol 2009, 51:17-29.
  • [37]Kok DH, Sakkers RJ, Pruijs HE, Joosse P, Castelein RM: Bone mineral density in developing children with osteogenesis imperfecta: a longitudinal study with 9 years of follow-up. Acta Orthop 2013, 84:431-436.
  • [38]Folkestad L, Hald JD, Hansen S, Gram J, Langdahl B, Abrahamsen B, Brixen K: Bone geometry, density, and microarchitecture in the distal radius and tibia in adults with osteogenesis imperfecta type I assessed by high-resolution pQCT. J Bone Miner Res 2012, 27:1405-1412.
  • [39]Kutilek S, Bayer M: Quantitative ultrasonometry of the calcaneus in children with osteogenesis imperfecta. J Paediatr Child Health 2010, 46:592-594.
  • [40]Edouard T, Glorieux FH, Rauch F: Predictors and correlates of vitamin D status in children and adolescents with osteogenesis imperfecta. J Clin Endocrinol Metab 2011, 96:3193-3198.
  • [41]Baroncelli GI, Bertelloni S, Sodini F, Saggese G: Osteoporosis in children and adolescents: etiology and management. Paediatr Drugs 2005, 7:295-323.
  • [42]Poyrazoglu S, Gunoz H, Darendeliler F, Bas F, Tutunculer F, Eryilmaz SK, Bundak R, Saka N: Successful results of pamidronate treatment in children with osteogenesis imperfecta with emphasis on the interpretation of bone mineral density for local standards. J Pediatr Orthop 2008, 28:483-487.
  • [43]Alcausin MB, Briody J, Pacey V, Ault J, McQuade M, Bridge C, Engelbert RH, Sillence DO, Munns CF: Intravenous pamidronate treatment in children with moderate-to-severe osteogenesis imperfecta started under three years of Age. Horm Res Paediatr 2013, 79:333-340.
  • [44]Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R: Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med 1998, 339:947-952.
  • [45]Rauch F, Travers R, Plotkin H, Glorieux FH: The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest 2002, 110:1293-1299.
  • [46]Antoniazzi F, Monti E, Venturi G, Franceschi R, Doro F, Gatti D, Zamboni G, Tatò L: GH in combination with bisphosphonate treatment in osteogenesis imperfecta. Eur J Endocrinol 2010, 163:479-487.
  • [47]Rauch F, Munns CF, Land C, Cheung M, Glorieux FH: Risedronate in the treatment of mild pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Bone Miner Res 2009, 24:1282-1289.
  • [48]Sakkers R, Kok D, Engelbert R, van Dongen A, Jansen M, Pruijs H, Verbout A, Schweitzer D, Uiterwaal C: Skeletal effects and functional outcome with olpadronate in children with osteogenesis imperfecta: a 2-year randomised placebo-controlled study. Lancet 2004, 363:1427-1431.
  • [49]Sousa T, Bompadre V, White KK: Musculoskeletal functional outcomes in children with osteogenesis imperfecta: associations with disease severity and pamidronate therapy. J Pediatr Orthop 2014, 34:118-122.
  • [50]Bruck A: Ueber eine seltene Form von Erkrankung der Knochen und Gelenke. Dtsch Med Wochenschr 1897, 23:152-155.
  • [51]Schwarze U, Cundy T, Pyott SM, Christiansen HE, Hegde MR, Bank RA, Pals G, Ankala A, Conneely K, Seaver L, Yandow SM, Raney E, Babovic-Vuksanovic D, Stoler J, Ben-Neriah Z, Segel R, Lieberman S, Siderius L, Al-Aqeel A, Hannibal M, Hudgins L, McPherson E, Clemens M, Sussman MD, Steiner RD, Mahan J, Smith R, Anyane-Yeboa K, Wynn J, Chong K, et al.: Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen. Hum Mol Genet 2013, 22:1-17.
  • [52]Kelley BP, Malfait F, Bonafe L, Baldridge D, Homan E, Symoens S, Willaert A, Elcioglu N, Van Maldergem L, Verellen-Dumoulin C, Gillerot Y, Napierala D, Krakow D, Beighton P, Superti-Furga A, De Paepe A, Lee B: Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res 2011, 26:666-672.
  • [53]Barnes AM, Cabral WA, Weis M, Makareeva E, Mertz EL, Leikin S, Eyre D, Trujillo C, Marini JC: Absence of FKBP10 in recessive type XI osteogenesis imperfecta leads to diminished collagen cross-linking and reduced collagen deposition in extracellular matrix. Hum Mutat 2012, 33:1589-1598.
  • [54]Datta V, Sinha A, Saili A, Nangia S: Bruck syndrome. Indian J Pediatr 2005, 72:441-442.
  • [55]Viljoen D, Versfeld G, Beighton P: Osteogenesis imperfecta with congenital joint contractures (Bruck syndrome). Clin Genet 1989, 36:122-126.
  • [56]Brenner RE, Vetter U, Stöss H, Müller PK, Teller WM: Defective collagen fibril formation and mineralization in osteogenesis imperfecta with congenital joint contractures (Bruck syndrome). Eur J Pediatr 1993, 152:505-508.
  • [57]Andiran N, Alikasifoglu A, Alanay Y, Yordam N: Cyclic pamidronate treatment in Bruck syndrome: proposal of a new modality of treatment. Pediatr Int 2008, 50:836-838.
  • [58]Dent CE, Friedman M: Idiopathic juvenile osteoporosis. Q J Med 1965, 34:177-210.
  • [59]Bacchetta J, Wesseling-Perry K, Gilsanz V, Gales B, Pereira RC, Salusky IB: Idiopathic juvenile osteoporosis: a cross-sectional single-centre experience with bone histomorphometry and quantitative computed tomography. Pediatr Rheumatol Online J 2013, 11:6. BioMed Central Full Text
  • [60]Rauch F, Travers R, Norman ME, Taylor A, Parfitt AM, Glorieux FH: The bone formation defect in idiopathic juvenile osteoporosis is surface-specific. Bone 2002, 31:85-89.
  • [61]Rauch F, Bishop N: Idiopatic Juvenile Osteoporosis. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 7th edition. Edited by Rosen C. Washington: American Society for the Bone and Mineral Research; 2008:264-267.
  • [62]Rauch F, Travers R, Norman ME, Taylor A, Parfitt AM, Glorieux FH: Deficient bone formation in idiopathic juvenile osteoporosis: a histomorphometric study of cancellous iliac bone. J Bone Miner Res 2000, 15:957-963.
  • [63]Lorenc RS: Idiopathic juvenile osteoporosis. Calcif Tissue Int 2002, 70:395-397.
  • [64]Baroncelli GI, Vierucci F, Bertelloni S, Erba P, Zampollo E, Giuca MR: Pamidronate treatment stimulates the onset of recovery phase reducing fracture rate and skeletal deformities in patients with idiopathic juvenile osteoporosis: comparison with untreated patients. J Bone Miner Metab 2013, 31:533-543.
  • [65]Mäyränpää MK, Tamminen IS, Kröger H, Mäkitie O: Bone biopsy findings and correlation with clinical, radiological, and biochemical parameters in children with fractures. J Bone Miner Res 2011, 26:1748-1758.
  • [66]Teotia M, Teotia SP, Singh RK: Idiopathic juvenile osteoporosis. Am J Dis Child 1979, 133:894-900.
  • [67]Krassas GE: Idiopathic juvenile osteoporosis. Ann N Y Acad Sci 2000, 900:409-412.
  • [68]Saggese G, Bertelloni S, Baroncelli GI, Perri G, Calderazzi A: Mineral metabolism and calcitriol therapy in idiopathic juvenile osteoporosis. Am J Dis Child 1991, 145:457-462.
  • [69]Marder HK, Tsang RC, Hug G, Crawford AC: Calcitriol deficiency in idiopathic juvenile osteoporosis. Am J Dis Child 1982, 136:914-917.
  • [70]Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, Mumm S: Osteoprotegerin deficiency and juvenile Paget’s disease. N Engl J Med 2002, 347:175-184.
  • [71]Deftos LJ: Treatment of Paget’s disease–taming the wild osteoclast. N Engl J Med 2005, 353:872-875.
  • [72]Brunetti G, Marzano F, Colucci S, Ventura A, Cavallo L, Grano M, Faienza MF: Genotype-phenotype correlation in juvenile Paget disease: role of molecular alterations of the TNFRSF11B gene. Endocrine 2012, 42:266-271.
  • [73]Vega D, Maalouf NM, Sakhaee K: CLINICAL Review #: the role of receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/osteoprotegerin: clinical implications. J Clin Endocrinol Metab 2007, 92:4514-4521.
  • [74]Indumathi CK, Dinakar C, Roshan R: Juvenile Paget’s disease. Indian Pediatr 2009, 46:354-356.
  • [75]Cundy T, Davidson J, Rutland MD, Stewart C, DePaoli AM: Recombinant osteoprotegerin for juvenile Paget’s disease. N Engl J Med 2005, 353:918-923.
  • [76]Cundy T, Wheadon L, King A: Treatment of idiopathic hyperphosphatasia with intensive bisphosphonate therapy. J Bone Miner Res 2004, 19:703-711.
  • [77]Lombardi A: Treatment of Paget’s disease of bone with alendronate. Bone 1999, 24:59S-61S.
  • [78]Wendlová J, Galbavý S, Paukovic J: Paget’s disease of bone–treatment with alendronate, calcium and calcitriol. Vnitr Lek 1999, 45:602-605.
  • [79]Khan SA, Vasikaran S, McCloskey EV, Benéton MN, Rogers S, Coulton L, Orgee J, Coombes G, Kanis JA: Alendronate in the treatment of Paget’s disease of bone. Bone 1997, 20:263-271.
  • [80]Bianchi ML, Cimaz R, Bardare M, Zulian F, Lepore L, Boncompagni A, Galbiati E, Corona F, Luisetto G, Giuntini D, Picco P, Brandi ML, Falcini F: Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue diseases in children: a prospective multicenter study. Arthritis Rheum 2000, 43:1960-1966.
  • [81]Joshi SR, Ambhore S, Butala N, Patwardhan M, Kulkarni M, Pai B, Karne R: Paget’s disease from Western India. J Assoc Physicians India 2006, 54:535-538.
  • [82]Polyzos SA, Anastasilakis AD, Litsas I, Efstathiadou Z, Kita M, Arsos G, Moralidis E, Papatheodorou A, Terpos E: Profound hypocalcemia following effective response to zoledronic acid treatment in a patient with juvenile Paget’s disease. J Bone Miner Metab 2010, 28:706-712.
  • [83]Whyte MP, Mumm S: Heritable disorders of the RANKL/OPG/RANK signaling pathway. J Musculoskelet Neuronal Interact 2004, 4:254-267.
  • [84]Nakatsuka K, Nishizawa Y, Ralston SH: Phenotypic characterization of early onset Paget’s disease of bone caused by a 27-bp duplication in the TNFRSF11A gene. J Bone Miner Res 2003, 18:1381-1385.
  • [85]Ralston SH: Juvenile Paget’s disease, familial expansile osteolysis and other genetic osteolytic disorders. Best Pract Res Clin Rheumatol 2008, 22:101-111.
  • [86]Whyte MP: Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann N Y Acad Sci 2010, 1192:190-200.
  • [87]Mornet E, Hofmann C, Bloch-Zupan A, Girschick H, Le Merrer M: Clinical utility gene card for: Hypophosphatasia - update 2013. Eur J Hum Genet 2014., 22(4)
  • [88]Rockman-Greenberg C: Hypophosphatasia. Pediatr Endocrinol Rev 2013, 10(Suppl 2):380-388.
  • [89]Mornet E: Hypophosphatasia. Orphanet J Rare Dis 2007, 2:40. BioMed Central Full Text
  • [90]Belachew D, Kazmerski T, Libman I, Goldstein AC, Stevens ST, Deward S, Vockley J, Sperling MA, Balest AL: Infantile hypophosphatasia secondary to a novel compound heterozygous mutation presenting with pyridoxine-responsive seizures. JIMD Rep 2013, 11:17-24.
  • [91]Hofmann C, Liese J, Schwarz T, Kunzmann S, Wirbelauer J, Nowak J, Hamann J, Girschick H, Graser S, Dietz K, Zeck S, Jakob F, Mentrup B: Compound heterozygosity of two functional null mutations in the ALPL gene associated with deleterious neurological outcome in an infant with hypophosphatasia. Bone 2013, 55:150-157.
  • [92]Berkseth KE, Tebben PJ, Drake MT, Hefferan TE, Jewison DE, Wermers RA: Clinical spectrum of hypophosphatasia diagnosed in adults. Bone 2013, 54:21-27.
  • [93]Martins L, Rodrigues TL, Ribeiro MM, Saito MT, Giorgetti AP, Casati MZ, Sallum EA, Foster BL, Somerman MJ, Nociti FH Jr: Novel ALPL genetic alteration associated with an odontohypophosphatasia phenotype. Bone 2013, 56:390-397.
  • [94]Chen H, Han Y, Li X, Liu X, Feng W, Xu W: Hypophosphatasia. Skeletal Radiol 2013, 42:295-296. 317–318
  • [95]Sutton RA, Mumm S, Coburn SP, Ericson KL, Whyte MP: “Atypical femoral fractures” during bisphosphonate exposure in adult hypophosphatasia. J Bone Miner Res 2012, 27:987-994.
  • [96]Fleisch H, Russell RG, Francis MD: Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science 1969, 165:1262-1264.
  • [97]Oikawa H, Tomatsu S, Haupt B, Montaño AM, Shimada T, Sly WS: Enzyme replacement therapy on hypophosphatasia mouse model. J Inherit Metab Dis 2014, 37:309-317.
  • [98]Lee JY, Imel EA: The changing face of hypophosphatemic disorders in the FGF-23 era. Pediatr Endocrinol Rev 2013, 10(Suppl 2):367-379.
  • [99]Jagtap VS, Sarathi V, Lila AR, Bandgar T, Menon P, Shah NS: Hypophosphatemic rickets. Indian J Endocrinol Metab 2012, 16:177-182.
  • [100]Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Jüppner H: Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 2003, 348:1656-1663.
  • [101]Benet-Pagès A, Lorenz-Depiereux B, Zischka H, White KE, Econs MJ, Strom TM: FGF23 is processed by proprotein convertases but not by PHEX. Bone 2004, 35:455-462.
  • [102]Quarles LD: Evidence for a bone-kidney axis regulating phosphate homeostasis. J Clin Invest 2003, 112:642-646.
  • [103]Consortium TH: A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium Nat Genet 1995, 11:130-136.
  • [104]Morey M, Castro-Feijóo L, Barreiro J, Cabanas P, Pombo M, Gil M, Bernabeu I, Díaz-Grande JM, Rey-Cordo L, Ariceta G, Rica I, Nieto J, Vilalta R, Martorell L, Vila-Cots J, Aleixandre F, Fontalba A, Soriano-Guillén L, García-Sagredo JM, García-Miñaur S, Rodríguez B, Juaristi S, García-Pardos C, Martínez-Peinado A, Millán JM, Medeira A, Moldovan O, Fernandez A, Loidi L: Genetic diagnosis of X-linked dominant Hypophosphatemic Rickets in a cohort study: tubular reabsorption of phosphate and 1,25(OH)2D serum levels are associated with PHEX mutation type. BMC Med Genet 2011, 12:116. BioMed Central Full Text
  • [105]Christov M, Jüppner H: Insights from genetic disorders of phosphate homeostasis. Semin Nephrol 2013, 33:143-157.
  • [106]Shore RM, Langman CB, Poznanski AK: Lumbar and radial bone mineral density in children and adolescents with X-linked hypophosphatemia: evaluation with dual X-ray absorptiometry. Skeletal Radiol 2000, 29:90-93.
  • [107]Beck-Nielsen SS, Brusgaard K, Rasmussen LM, Brixen K, Brock-Jacobsen B, Poulsen MR, Vestergaard P, Ralston SH, Albagha OM, Poulsen S, Haubek D, Gjørup H, Hintze H, Andersen MG, Heickendorff L, Hjelmborg J, Gram J: Phenotype presentation of hypophosphatemic rickets in adults. Calcif Tissue Int 2010, 87:108-119.
  • [108]Cheung M, Roschger P, Klaushofer K, Veilleux LN, Roughley P, Glorieux FH, Rauch F: Cortical and trabecular bone density in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 2013, 98:E954-E961.
  • [109]Veilleux LN, Cheung MS, Glorieux FH, Rauch F: The muscle-bone relationship in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 2013, 98:E990-E995.
  • [110]Felsenfeld AJ, Levine BS: Approach to treatment of hypophosphatemia. Am J Kidney Dis 2012, 60:655-661.
  • [111]Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS: Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci U S A 1998, 95:5372-5377.
  • [112]Karim Z, Gérard B, Bakouh N, Alili R, Leroy C, Beck L, Silve C, Planelles G, Urena-Torres P, Grandchamp B, Friedlander G, Prié D: NHERF1 mutations and responsiveness of renal parathyroid hormone. N Engl J Med 2008, 359:1128-1135.
  • [113]Prié D, Huart V, Bakouh N, Planelles G, Dellis O, Gérard B, Hulin P, Benqué-Blanchet F, Silve C, Grandchamp B, Friedlander G: Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med 2002, 347:983-991.
  • [114]Pfeiffer RF: Wilson’s disease. Semin Neurol 2007, 27:123-132.
  • [115]Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW: The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 1993, 5:327-337.
  • [116]Petrukhin K, Fischer SG, Pirastu M, Tanzi RE, Chernov I, Devoto M, Brzustowicz LM, Cayanis E, Vitale E, Russo JJ, Matseoane D, Boukhgalter B, Wasco W, Figus AL, Loudianos J, Cao A, Sternlieb I, Evgrafov O, Parano E, Pavone L, Warburton D, Ott J, Penchaszadeh GK, Scheinberg IH, Gilliam TC: Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nat Genet 1993, 5:338-343.
  • [117]Golding DN, Walshe JM: Arthropathy of Wilson’s disease. Study of clinical and radiological features in 32 patients. Ann Rheum Dis 1977, 36:99-111.
  • [118]Golding DN, Walshe JM: Proceedings: the musculoskeletal features of Wilson’s disease: a clinical, radiological, and serological survey. Ann Rheum Dis 1975, 34:201.
  • [119]Canelas HM, Carvalho N, Scaff M, Vitule A, Barbosa ER, Azevedo EM: Osteoarthropathy of hepatolenticular degeneration. Acta Neurol Scand 1978, 57:481-487.
  • [120]Mindelzun R, Elkin M, Scheinberg IH, Sternlieb I: Skeletal changes in Wilson’s disease. A radiological study. Radiology 1970, 94:127-132.
  • [121]Menkes JH, Alter M, Steigleder GK, Weakley DR, Sung JH: A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics 1962, 29:764-779.
  • [122]Tønnesen T, Kleijer WJ, Horn N: Incidence of Menkes disease. Hum Genet 1991, 86:408-410.
  • [123]Kanumakala S, Boneh A, Zacharin M: Pamidronate treatment improves bone mineral density in children with Menkes disease. J Inherit Metab Dis 2002, 25:391-398.
  • [124]Laine CM, Koltin D, Susic M, Varley TL, Daneman A, Moineddin R, Cole WG, Mäkitie O, Sochett E: Primary osteoporosis without features of OI in children and adolescents: clinical and genetic characteristics. Am J Med Genet A 2012, 158A:1252-1261.
  • [125]Neuhäuser G, Kaveggia EG, Opitz JM: Autosomal recessive syndrome of pseudogliomantous blindness, osteoporosis and mild mental retardation. Clin Genet 1976, 9:324-332.
  • [126]Ai M, Heeger S, Bartels CF, Schelling DK, Osteoporosis-Pseudoglioma Collaborative Group: Clinical and molecular findings in osteoporosis-pseudoglioma syndrome. Am J Hum Genet 2005, 77:741-753.
  • [127]Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, et al.: LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001, 107:513-523.
  • [128]Somer H, Palotie A, Somer M, Hoikka V, Peltonen L: Osteoporosis-pseudoglioma syndrome: clinical, morphological, and biochemical studies. J Med Genet 1988, 25:543-549.
  • [129]Frontali M, Dallapiccola B: Osteoporosis-pseudoglioma syndrome and the ocular form of osteogenesis imperfecta. Clin Genet 1986, 29:262.
  • [130]Beighton P: Osteoporosis-pseudoglioma syndrome. Clin Genet 1986, 29:263.
  • [131]Gong Y, Vikkula M, Boon L, Liu J, Beighton P, Ramesar R, Peltonen L, Somer H, Hirose T, Dallapiccola B, De Paepe A, Swoboda W, Zabel B, Superti-Furga A, Steinmann B, Brunner HG, Jans A, Boles RG, Adkins W, van den Boogaard MJ, Olsen BR, Warman ML: Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12-13. Am J Hum Genet 1996, 59:146-151.
  • [132]Downey LM, Bottomley HM, Sheridan E, Ahmed M, Gilmour DF, Inglehearn CF, Reddy A, Agrawal A, Bradbury J, Toomes C: Reduced bone mineral density and hyaloid vasculature remnants in a consanguineous recessive FEVR family with a mutation in LRP5. Br J Ophthalmol 2006, 90:1163-1167.
  • [133]Hartikka H, Mäkitie O, Männikkö M, Doria AS, Daneman A, Cole WG, Ala-Kokko L, Sochett EB: Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res 2005, 20:783-789.
  • [134]Bayram F, Tanriverdi F, Kurtoğlu S, Atabek ME, Kula M, Kaynar L, Keleştimur F: Effects of 3 years of intravenous pamidronate treatment on bone markers and bone mineral density in a patient with osteoporosis-pseudoglioma syndrome (OPPG). J Pediatr Endocrinol Metab 2006, 19:275-279.
  • [135]Lev D, Binson I, Foldes AJ, Watemberg N, Lerman-Sagie T: Decreased bone density in carriers and patients of an Israeli family with the osteoporosis-pseudoglioma syndrome. Isr Med Assoc J 2003, 5:419-421.
  • [136]Barros ER, da Silva MR D, Kunii IS, Hauache OM, Lazaretti-Castro M: A novel mutation in the LRP5 gene is associated with osteoporosis-pseudoglioma syndrome. Osteoporos Int 2007, 18:1017-1018.
  • [137]Cheung WM, Jin LY, Smith DK, Cheung PT, Kwan EY, Low L, Kung AW: A family with osteoporosis pseudoglioma syndrome due to compound heterozygosity of two novel mutations in the LRP5 gene. Bone 2006, 39:470-476.
  • [138]Crabbe P, Balemans W, Willaert A, van Pottelbergh I, Cleiren E, Coucke PJ, Ai M, Goemaere S, van Hul W, de Paepe A, Kaufman JM: Missense mutations in LRP5 are not a common cause of idiopathic osteoporosis in adult men. J Bone Miner Res 2005, 20:1951-1959.
  • [139]Streeten EA, McBride D, Puffenberger E, Hoffman ME, Pollin TI, Donnelly P, Sack P, Morton H: Osteoporosis-pseudoglioma syndrome: description of 9 new cases and beneficial response to bisphosphonates. Bone 2008, 43:584-590.
  • [140]Toomes C, Bottomley HM, Jackson RM, Towns KV, Scott S, Mackey DA, Craig JE, Jiang L, Yang Z, Trembath R, Woodruff G, Gregory-Evans CY, Gregory-Evans K, Parker MJ, Black GC, Downey LM, Zhang K, Inglehearn CF: Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am J Hum Genet 2004, 74:721-730.
  • [141]Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP: High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002, 346:1513-1521.
  • [142]Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schütz G, Glorieux FH, Chiang CY, Zajac JD, Insogna KL, Mann JJ, Hen R, Ducy P, Karsenty G: Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 2008, 135:825-837.
  • [143]Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, et al.: A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002, 70:11-19.
  • [144]Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Bénichou O, Scopelliti D, Key L, Renton T, Bartels C, Gong Y, Warman ML, De Vernejoul MC, Bollerslev J, Van Hul W: Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 2003, 72:763-771.
  • [145]Saarinen A, Saukkonen T, Kivelä T, Lahtinen U, Laine C, Somer M, Toiviainen-Salo S, Cole WG, Lehesjoki AE, Mäkitie O: Low density lipoprotein receptor-related protein 5 (LRP5) mutations and osteoporosis, impaired glucose metabolism and hypercholesterolaemia. Clin Endocrinol (Oxf) 2010, 72:481-488.
  • [146]Yadav VK, Ducy P: Lrp5 and bone formation: A serotonin-dependent pathway. Ann N Y Acad Sci 2010, 1192:103-109.
  • [147]Westendorf JJ, Kahler RA, Schroeder TM: Wnt signaling in osteoblasts and bone diseases. Gene 2004, 341:19-39.
  • [148]Narumi S, Numakura C, Shiihara T, Seiwa C, Nozaki Y, Yamagata T, Momoi MY, Watanabe Y, Yoshino M, Matsuishi T, Nishi E, Kawame H, Akahane T, Nishimura G, Emi M, Hasegawa T: Various types of LRP5 mutations in four patients with osteoporosis-pseudoglioma syndrome: identification of a 7.2-kb microdeletion using oligonucleotide tiling microarray. Am J Med Genet A 2010, 152A:133-140.
  • [149]Baldock PA, Eisman JA: Genetic determinants of bone mass. Curr Opin Rheumatol 2004, 16:450-456.
  • [150]Ferrari SL, Deutsch S, Choudhury U, Chevalley T, Bonjour JP, Dermitzakis ET, Rizzoli R, Antonarakis SE: Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet 2004, 74:866-875.
  • [151]Koay MA, Woon PY, Zhang Y, Miles LJ, Duncan EL, Ralston SH, Compston JE, Cooper C, Keen R, Langdahl BL, MacLelland A, O’Riordan J, Pols HA, Reid DM, Uitterlinden AG, Wass JA, Brown MA: Influence of LRP5 polymorphisms on normal variation in BMD. J Bone Miner Res 2004, 19:1619-1627.
  • [152]Sims AM, Shephard N, Carter K, Doan T, Dowling A, Duncan EL, Eisman J, Jones G, Nicholson G, Prince R, Seeman E, Thomas G, Wass JA, Brown MA: Genetic analyses in a sample of individuals with high or low BMD shows association with multiple Wnt pathway genes. J Bone Miner Res 2008, 23:499-506.
  • [153]Barros ER, da Silva MR D, Kunii IS, Lazaretti-Castro M: Three years follow-up of pamidronate therapy in two brothers with osteoporosis-pseudoglioma syndrome (OPPG) carrying an LRP5 mutation. J Pediatr Endocrinol Metab 2008, 21:811-818.
  • [154]Arantes HP, Barros ER, Kunii I, Bilezikian JP, Lazaretti-Castro M: Teriparatide increases bone mineral density in a man with osteoporosis pseudoglioma. J Bone Miner Res 2011, 26:2823-2826.
  • [155]Picker JD, Levy HL: Homocystinuria Caused by Cystathionine Beta-Synthase Deficiency. In GeneReviews® [Internet]. Edited by Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K. Seattle (WA): University of Washington, Seattle; 1993-2014. 2004 Jan 15 [updated 2011 Apr 26]
  • [156]van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, de Groot LC, Hofman A, Witteman JC, van Leeuwen JP, Breteler MM, Lips P, Pols HA, Uitterlinden AG: Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 2004, 350:2033-2041.
  • [157]Yap S, Boers GH, Wilcken B, Wilcken DE, Brenton DP, Lee PJ, Walter JH, Howard PM, Naughten ER: Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol 2001, 21:2080-2085.
  • [158]McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, Hannan MT, Cupples LA, Kiel DP: Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med 2004, 350:2042-2049.
  • [159]Sakamoto W, Isomura H, Fujie K, Deyama Y, Kato A, Nishihira J, Izumi H: Homocysteine attenuates the expression of osteocalcin but enhances osteopontin in MC3T3-E1 preosteoblastic cells. Biochim Biophys Acta 2005, 1740:12-16.
  • [160]Azizi ZA, Zamani A, Omrani LR, Omrani L, Dabaghmanesh MH, Mohammadi A, Namavar MR, Omrani GR: Effects of hyperhomocysteinemia during the gestational period on ossification in rat embryo. Bone 2010, 46:1344-1348.
  • [161]Lim JS, Lee DH: Changes in bone mineral density and body composition of children with well-controlled homocystinuria caused by CBS deficiency. Osteoporos Int 2013, 24:2535-2538.
  • [162]Dolan AL, Arden NK, Grahame R, Spector TD: Assessment of bone in Ehlers Danlos syndrome by ultrasound and densitometry. Ann Rheum Dis 1998, 57:630-633.
  • [163]Levy HP: Ehlers-Danlos Syndrome, Hypermobility Type. In GeneReviews® [Internet]. Edited by Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K. Seattle (WA): University of Washington, Seattle; 1993-2014. 2004 Oct 22 [updated 2012 Sep 13]
  • [164]Yen JL, Lin SP, Chen MR, Niu DM: Clinical features of Ehlers-Danlos syndrome. J Formos Med Assoc 2006, 105:475-480.
  • [165]Beighton P, Horan F: Orthopaedic aspects of the Ehlers-Danlos syndrome. J Bone Joint Surg (Br) 1969, 51:444-453.
  • [166]Theodorou SJ, Theodorou DJ, Kakitsubata Y, Adams JE: Low bone mass in Ehlers-Danlos syndrome. Intern Med 2012, 51:3225-3226.
  • [167]Deodhar AA, Woolf AD: Ehlers Danlos syndrome and osteoporosis. Ann Rheum Dis 1994, 53:841-842.
  • [168]Coelho PC, Santos RA, Gomes JA: Osteoporosis and Ehlers-Danlos syndrome. Ann Rheum Dis 1994, 53:212-213.
  • [169]Gray JR, Bridges AB, Faed MJ, Pringle T, Baines P, Dean J, Boxer M: Ascertainment and severity of Marfan syndrome in a Scottish population. J Med Genet 1994, 31:51-54.
  • [170]Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, Stetten G, Meyers DA, Francomano CA: Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991, 352:337-339.
  • [171]Lee B, Godfrey M, Vitale E, Hori H, Mattei MG, Sarfarazi M, Tsipouras P, Ramirez F, Hollister DW: Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature 1991, 352:330-334.
  • [172]Maslen CL, Corson GM, Maddox BK, Glanville RW, Sakai LY: Partial sequence of a candidate gene for the Marfan syndrome. Nature 1991, 352:334-337.
  • [173]Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY, Dietz HC: Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest 2004, 114:172-181.
  • [174]Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, Feng X, Van Hul W, Wan M, Cao X: TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 2009, 15:757-765.
  • [175]Byers PH: Determination of the molecular basis of Marfan syndrome: a growth industry. J Clin Invest 2004, 114:161-163.
  • [176]Mundy GR, Bonewald LF: Role of TGF beta in bone remodeling. Ann N Y Acad Sci 1990, 593:91-97.
  • [177]Mohammad KS, Chen CG, Balooch G, Stebbins E, McKenna CR, Davis H, Niewolna M, Peng XH, Nguyen DH, Ionova-Martin SS, Bracey JW, Hogue WR, Wong DH, Ritchie RO, Suva LJ, Derynck R, Guise TA, Alliston T: Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS One 2009, 4:e5275.
  • [178]Edwards JR, Nyman JS, Lwin ST, Moore MM, Esparza J, O’Quinn EC, Hart AJ, Biswas S, Patil CA, Lonning S, Mahadevan-Jansen A, Mundy GR: Inhibition of TGF-β signaling by 1D11 antibody treatment increases bone mass and quality in vivo. J Bone Miner Res 2010, 25:2419-2426.
  • [179]Nistala H, Lee-Arteaga S, Carta L, Cook JR, Smaldone S, Siciliano G, Rifkin AN, Dietz HC, Rifkin DB, Ramirez F: Differential effects of alendronate and losartan therapy on osteopenia and aortic aneurysm in mice with severe Marfan syndrome. Hum Mol Genet 2010, 19:4790-4798.
  • [180]Kohlmeier L, Gasner C, Bachrach LK, Marcus R: The bone mineral status of patients with Marfan syndrome. J Bone Miner Res 1995, 10:1550-1555.
  • [181]Kohlmeier L, Gasner C, Marcus R: Bone mineral status of women with Marfan syndrome. Am J Med 1993, 95:568-572.
  • [182]Le Parc JM, Plantin P, Jondeau G, Goldschild M, Albert M, Boileau C: Bone mineral density in sixty adult patients with Marfan syndrome. Osteoporos Int 1999, 10:475-479.
  • [183]Carter N, Duncan E, Wordsworth P: Bone mineral density in adults with Marfan syndrome. Rheumatology (Oxford) 2000, 39:307-309.
  • [184]Tobias JH, Dalzell N, Child AH: Assessment of bone mineral density in women with Marfan syndrome. Br J Rheumatol 1995, 34:516-519.
  • [185]Moura B, Tubach F, Sulpice M, Boileau C, Jondeau G, Muti C, Chevallier B, Ounnoughene Y, Le Parc JM, Multidisciplinary Marfan Syndrome Clinic Group: Bone mineral density in Marfan syndrome. A large case–control study. Joint Bone Spine 2006, 73:733-735.
  • [186]Giampietro PF, Peterson M, Schneider R, Davis JG, Raggio C, Myers E, Burke SW, Boachie-Adjei O, Mueller CM: Assessment of bone mineral density in adults and children with Marfan syndrome. Osteoporos Int 2003, 14:559-563.
  • [187]Giampietro PF, Peterson MG, Schneider R, Davis JG, Burke SW, Boachie-Adjei O, Mueller CM, Raggio CL: Bone mineral density determinations by dual-energy x-ray absorptiometry in the management of patients with Marfan syndrome–some factors which affect the measurement. HSS J 2007, 3:89-92.
  • [188]Gray JR, Bridges AB, Mole PA, Pringle T, Boxer M, Paterson CR: Osteoporosis and the Marfan syndrome. Postgrad Med J 1993, 69:373-375.
  • [189]Grover M, Brunetti-Pierri N, Belmont J, Phan K, Tran A, Shypailo RJ, Ellis KJ, Lee BH: Assessment of bone mineral status in children with Marfan syndrome. Am J Med Genet A 2012, 158A:2221-2224.
  • [190]Hajdu N, Kauntze R: Cranio-skeletal dysplasia. Br J Radiol 1948, 21:42-48.
  • [191]Cheney WD: Acro-osteolysis. Am J Roentgenol Radium Ther Nucl Med 1965, 94:595-607.
  • [192]Stathopoulos IP, Trovas G, Lampropoulou-Adamidou K, Koromila T, Kollia P, Papaioannou NA, Lyritis G: Severe osteoporosis and mutation in NOTCH2 gene in a woman with Hajdu-Cheney syndrome. Bone 2013, 52:366-371.
  • [193]Gu JM, Hu YQ, Zhang H, Wang C, Hu WW, Yue H, Liu YJ, Zhang ZL: A mutation in NOTCH2 gene in a Chinese patient with Hajdu-Cheney syndrome. Joint Bone Spine 2013, 80:548-549.
  • [194]Zanotti S, Canalis E: Notch signaling in skeletal health and disease. Eur J Endocrinol 2013, 168:R95-R103.
  • [195]Elias AN, Pinals RS, Anderson HC, Gould LV, Streeten DH: Hereditary osteodysplasia with acro-osteolysis. (The Hajdu-Cheney syndrome). Am J Med 1978, 65:627-636.
  • [196]Ramos FJ, Kaplan BS, Bellah RD, Zackai EH, Kaplan P: Further evidence that the Hajdu-Cheney syndrome and the “serpentine fibula-polycystic kidney syndrome” are a single entity. Am J Med Genet 1998, 78:474-481.
  • [197]Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D, Elmslie FV, Mansour S, Holder SE, Brain CE, Burton BK, Kim KH, Pauli RM, Aftimos S, Stewart H, Kim CA, Holder-Espinasse M, Robertson SP, Drake WM, Trembath RC: Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet 2011, 43:303-305.
  • [198]Brennan AM, Pauli RM: Hajdu–Cheney syndrome: evolution of phenotype and clinical problems. Am J Med Genet 2001, 100:292-310.
  • [199]Isidor B, Le Merrer M, Exner GU, Pichon O, Thierry G, Guiochon-Mantel A, David A, Cormier-Daire V, Le Caignec C: Serpentine fibula-polycystic kidney syndrome caused by truncating mutations in NOTCH2. Hum Mutat 2011, 32:1239-1242.
  • [200]Leidig-Bruckner G, Pfeilschifter J, Penning N, Limberg B, Priemel M, Delling G, Ziegler R: Severe osteoporosis in familial Hajdu-Cheney syndrome: progression of acro-osteolysis and osteoporosis during long-term follow-up. J Bone Miner Res 1999, 14:2036-2041.
  • [201]Nunziata V, di Giovanni G, Ballanti P, Bonucci E: High turnover osteoporosis in acro-osteolysis (Hajdu-Cheney syndrome). J Endocrinol Invest 1990, 13:251-255.
  • [202]Udell J, Schumacher HR Jr, Kaplan F, Fallon MD: Idiopathic familial acroosteolysis: histomorphometric study of bone and literature review of the Hajdu-Cheney syndrome. Arthritis Rheum 1986, 29:1032-1038.
  • [203]Blumenauer BT, Cranney AB, Goldstein R: Acro-osteolysis and osteoporosis as manifestations of the Hajdu-Cheney syndrome. Clin Exp Rheumatol 2002, 20:574-575.
  • [204]Avela K, Valanne L, Helenius I, Mäkitie O: Hajdu-Cheney syndrome with severe dural ectasia. Am J Med Genet A 2011, 155A:595-598.
  • [205]Brown DM, Bradford DS, Gorlin RJ, Desnick RJ, Langer LO, Jowsey J, Sauk JJ: The acro-osteolysis syndrome: morphologic and biochemical studies. J Pediatr 1976, 88:573-580.
  • [206]Narumi Y, Min BJ, Shimizu K, Kazukawa I, Sameshima K, Nakamura K, Kosho T, Rhee Y, Chung YS, Kim OH, Fukushima Y, Park WY, Nishimura G: Clinical consequences in truncating mutations in exon 34 of NOTCH2: report of six patients with Hajdu-Cheney syndrome and a patient with serpentine fibula polycystic kidney syndrome. Am J Med Genet A 2013, 161A:518-526.
  • [207]McKiernan FE: Integrated anti-remodeling and anabolic therapy for the osteoporosis of Hajdu-Cheney syndrome. Osteoporos Int 2007, 18:245-249.
  • [208]Terroso G, Bernardes M, Aleixo A, Vieira R, Madureira P, Fonseca R, Goncalves D, Costa L: Severe osteoporosis associated with Hajdu–Cheney syndrome: follow-up after 2 years of teriparatide therapy. Bone 2013, 1:PP12. Abstracts
  • [209]Hwang S, Shin DY, Moon SH, Lee EJ, Lim SK, Kim OH, Rhee Y: Effect of zoledronic acid on acro-osteolysis and osteoporosis in a patient with Hajdu-Cheney syndrome. Yonsei Med J 2011, 52:543-546.
  • [210]Galli-Tsinopoulou A, Kyrgios I, Giza S, Giannopoulou EM, Maggana I, Laliotis N: Two-year cyclic infusion of pamidronate improves bone mass density and eliminates risk of fractures in a girl with osteoporosis due to Hajdu-Cheney syndrome. Minerva Endocrinol 2012, 37:283-289.
  • [211]Evans BR, Mosig RA, Lobl M, Martignetti CR, Camacho C, Grum-Tokars V, Glucksman MJ, Martignetti JA: Mutation of membrane type-1 metalloproteinase, MT1-MMP, causes the multicentric osteolysis and arthritis disease Winchester syndrome. Am J Hum Genet 2012, 91:572-576.
  • [212]Zankl A, Bonafé L, Calcaterra V, Di Rocco M, Superti-Furga A: Winchester syndrome caused by a homozygous mutation affecting the active site of matrix metalloproteinase 2. Clin Genet 2005, 67:261-266.
  • [213]Superti-Furga A, Unger S: Nosology and classification of genetic skeletal disorders: 2006 revision. Am J Med Genet A 2007, 143:1-18.
  • [214]Zankl A, Pachman L, Poznanski A, Bonafé L, Wang F, Shusterman Y, Fishman DA, Superti-Furga A: Torg syndrome is caused by inactivating mutations in MMP2 and is allelic to NAO and Winchester syndrome. J Bone Miner Res 2007, 22:329-333.
  • [215]Jeong SY, Kim BY, Kim HJ, Yang JA, Kim OH: A novel homozygous MMP2 mutation in a patient with Torg-Winchester syndrome. J Hum Genet 2010, 55:764-766.
  • [216]Temtamy SA, Ismail S, Aglan MS, Ashour AM, Hosny LA, El-Badry TH, Aboul-Ezz EH, Amr K, Fateen E, Maguire T, Ungerer K, Zankl A: A report of three patients with MMP2 associated hereditary osteolysis. Genet Couns 2012, 23:175-184.
  • [217]Gok F, Crettol LM, Alanay Y, Hacihamdioglu B, Kocaoglu M, Bonafe L, Ozen S: Clinical and radiographic findings in two brothers affected with a novel mutation in matrix metalloproteinase 2 gene. Eur J Pediatr 2010, 169:363-367.
  • [218]Mosig RA, Dowling O, DiFeo A, Ramirez MC, Parker IC, Abe E, Diouri J, Aqeel AA, Wylie JD, Oblander SA, Madri J, Bianco P, Apte SS, Zaidi M, Doty SB, Majeska RJ, Schaffler MB, Martignetti JA: Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum Mol Genet 2007, 16:1113-1123.
  • [219]Phadke SR, Ramirez M, Difeo A, Martignetti JA, Girisha KM: Torg-Winchester syndrome: lack of efficacy of pamidronate therapy. Clin Dysmorphol 2007, 16:95-100.
  • [220]Dall’oca C, Bondi M, Merlini M, Cipolli M, Lavini F, Bartolozzi P: Shwachman-Diamond syndrome. Musculoskelet Surg 2012, 96:81-88.
  • [221]Boocock GR, Morrison JA, Popovic M, Richards N, Ellis L, Durie PR, Rommens JM: Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 2003, 33:97-101.
  • [222]Leung R, Cuddy K, Wang Y, Rommens J, Glogauer M: Sbds is required for Rac2-mediated monocyte migration and signaling downstream of RANK during osteoclastogenesis. Blood 2011, 117:2044-2053.
  • [223]Mäkitie O, Ellis L, Durie PR, Morrison JA, Sochett EB, Rommens JM, Cole WG: Skeletal phenotype in patients with Shwachman-Diamond syndrome and mutations in SBDS. Clin Genet 2004, 65:101-112.
  • [224]Toiviainen-Salo S, Mäyränpää MK, Durie PR, Richards N, Grynpas M, Ellis L, Ikegawa S, Cole WG, Rommens J, Marttinen E, Savilahti E, Mäkitie O: Shwachman-Diamond syndrome is associated with low-turnover osteoporosis. Bone 2007, 41:965-972.
  • [225]Nihrane A, Sezgin G, Dsilva S, Dellorusso P, Yamamoto K, Ellis SR, Liu JM: Depletion of the Shwachman-Diamond syndrome gene product, SBDS, leads to growth inhibition and increased expression of OPG and VEGF-A. Blood Cells Mol Dis 2009, 42:85-91.
  • [226]Bauer JJ, Snow CM: What is the prescription for healthy bones? J Musculoskelet Neuronal Interact 2003, 3:352-355.
  • [227]Bishop N: Primary osteoporosis. Endocr Dev 2009, 16:157-169.
  • [228]Rizzoli R, Bonjour JP, Ferrari SL: Osteoporosis, genetics and hormones. J Mol Endocrinol 2001, 26:79-94.
  • [229]Chad KE, Bailey DA, McKay HA, Zello GA, Snyder RE: The effect of a weight-bearing physical activity program on bone mineral content and estimated volumetric density in children with spastic cerebral palsy. J Pediatr 1999, 135:115-117.
  • [230]Janz KF, Letuchy EM, Eichenberger Gilmore JM, Burns TL, Torner JC, Willing MC, Levy SM: Early physical activity provides sustained bone health benefits later in childhood. Med Sci Sports Exerc 2010, 42:1072-1078.
  • [231]Bowden SA, Robinson RF, Carr R, Mahan JD: Prevalence of vitamin D deficiency and insufficiency in children with osteopenia or osteoporosis referred to a pediatric metabolic bone clinic. Pediatrics 2008, 121:e1585-e1590.
  • [232]Gafni RI, Baron J: Overdiagnosis of osteoporosis in children due to misinterpretation of dual-energy x-ray absorptiometry (DEXA). J Pediatr 2004, 144:253-257.
  • [233]Bianchi ML, Baim S, Bishop NJ, Gordon CM, Hans DB, Langman CB, Leonard MB, Kalkwarf HJ: Official positions of the International Society for Clinical Densitometry (ISCD) on DXA evaluation in children and adolescents. Pediatr Nephrol 2010, 25:37-47.
  • [234]Ward KA, Adams JE, Freemont TJ, Mughal MZ: Can bisphosphonate treatment be stopped in a growing child with skeletal fragility? Osteoporos Int 2007, 18:1137-1140.
  • [235]Vahle JL, Zuehlke U, Schmidt A, Westmore M, Chen P, Sato M: Lack of bone neoplasms and persistence of bone efficacy in cynomolgus macaques after long-term treatment with teriparatide [rhPTH(1–34)]. J Bone Miner Res 2008, 23:2033-2039.
  文献评价指标  
  下载次数:19次 浏览次数:19次