Journal of Animal Science and Biotechnology | |
Growth, digestive and absorptive capacity and antioxidant status in intestine and hepatopancreas of sub-adult grass carp Ctenopharyngodonidella fed graded levels of dietary threonine | |
Lin Feng2  Xiaoqiu Zhou2  Yongan Zhang1  Jun Jiang2  Yang Liu2  Ling Tang3  Kai Hu2  Shengyao Kuang3  Weidan Jiang2  Yang Hong4  | |
[1] Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan 430072, China;Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China;Sichuan Academy of Animal Science, Animal Nutrition Institute, Chengdu 610066, China;Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China | |
关键词: Threonine; Intestinal enzyme activity; Grass carp; Antioxidant status; | |
Others : 1224553 DOI : 10.1186/s40104-015-0032-1 |
|
received in 2014-12-19, accepted in 2015-07-02, 发布年份 2015 | |
【 摘 要 】
Background
This study was carried out to investigate effects of threonine levels on growth, digestive and absorptive capacity and antioxidant status in intestine and hepatopancreas of sub-adult grass carp (Ctenopharyngodonidella).
Results
Weight gain, specific growth rate, feed intake and feed efficiency were significantly improved by dietary threonine (P < 0.05). Intestinal activities of trypsin, chymotrypsin, alpha-amylase, lipase, alkaline phosphatase, γ-glutamyl transpeptidase and creatine kinase took the similar trends. Contents of malondialdehyde and protein carbonyl in intestine and hepatopancreas were significantly decreased by dietary optimal threonine supplementation (P < 0.05). Anti-superoxide anion capacity, anti-hydroxyl radical capacity, glutathione content and activities of superoxide dismutase, catalase and glutathione-S-transferase in intestine and hepatopancreas were enhanced by dietary threonine (P < 0.05).
Conclusions
Dietary threonine could improve growth, enhance digestive and absorptive capacity and antioxidant status in intestine and hepatopancreas of sub-adult grass carp. The dietary threonine requirement of sub-adult grass carp (441.9-1,013.4 g) based on weight gain was 11.6 g/kg diet or 41.5 g/kg of dietary protein by quadratic regression analysis.
【 授权许可】
2015 Hong et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150911092123969.pdf | 580KB | download | |
Fig. 1. | 23KB | Image | download |
【 图 表 】
Fig. 1.
【 参考文献 】
- [1]Boren RS, Gatlin DM III: Dietary threonine requirement of juvenile red drum Sciaenops ocellatus. J World Aquacult Soc 1995, 26:279-283.
- [2]Alam M, Teshima S, Koshio S, Yokoyama S, Ishikawa M: Optimum dietary threonine level for juvenile Japanese flounder Paralichthys olivaceus. Asian Fisheries Sci 2003, 16:175-184.
- [3]Ahmed I, Khan MA, Jafri A: Dietary threonine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Aquac Res 2004, 35:162-170.
- [4]Gisbert E, Giménez G, Fernández I, Kotzamanis Y, Estévez A: Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture 2009, 287:381-387.
- [5]Feng L, Peng Y, Wu P, Hu K, Jiang WD, Liu Y, et al.: Threonine affects intestinal function, protein synthesis and gene expression of TOR in Jian carp (Cyprinus carpio var. Jian). PloS One 2013., 8Article ID e69974
- [6]Tengjaroenkul B, Smith BJ, Caceci T, Smith SA: Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 2000, 182:317-327.
- [7]Ugolev A, Kuz'mina V: Fish enterocyte hydrolases. Nutrition adaptations. Comp Biochem Phys A 1994, 107:187-193.
- [8]Hofer R, Schiemer F: Proteolytic activity in the digestive tract of several species of fish with different feeding habits. Oecologia 1981, 48:342-345.
- [9]Fukuhara O: Morphological and functional development of larval and juvenile Limanda yokohamae (Pisces: Pleuronectidae) reared in the laboratory. Mar Biol 1988, 99:271-281.
- [10]Gao YJ, Yang HJ, Liu YJ, Chen SJ, Guo DQ, Yu YY, et al.: Effects of graded levels of threonine on growth performance, biochemicalparameters and intestine morphology of juvenile grass carpCtenopharyngodonidella. Aquaculture 2014, 424:113-119.
- [11]Shoveller AK, Stoll B, Ball RO, Burrin DG: Nutritional and functional importance of intestinal sulfur amino acid metabolism. J Nutr 2005, 135:1609-1612.
- [12]Feng L, Xiao WW, Liu Y, Jiang J, Hu K, Jiang WD, et al.: Methionine hydroxy analogue prevents oxidative damage and improves antioxidant status of intestine and hepatopancreas for juvenile Jian carp (Cyprinus carpio var. Jian). Aquacult Nutr 2011, 17:595-604.
- [13]Kohen R, Nyska A: Invited review: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2002, 30:620-650.
- [14]Huang YL, Sheu JY, Lin TH: Association between oxidative stress and changes of trace elements in patients with breast cancer. Clin Biochem 1999, 32:131-136.
- [15]Das D, Bandyopadhyay D, Bhattacharjee M, Banerjee RK: Hydroxyl radical is the major causative factor in stress-induced gastric ulceration. Free Radical Bio Med 1997, 23:8-18.
- [16]Grenouillet P, Martin RP, Rossi A, Ptak M: Interactions between copper (II) ions and l-threonine, l-allo-threonine and l-serine in aqueous solution. BBA-Protein Struct M 1973, 322:185-194.
- [17]Reddy IM, Mahoney AW: Solution visible difference spectral properties of Fe 3+ -L-amino acid complexes at pH 6.60. J Agr Food Chem 1995, 43:1436-1443.
- [18]Singh J, Chandra SV, Tandon SK: Chelation in metal intoxication II: in vitro and in vivo effect of some compounds on brain, liver and testis of rats treated with manganese sulphate. B Environ Contam Tox 1975, 14:497-504.
- [19]Grisham MB, Von Ritter C, Smith BF, Lamont JT, Granger DN: Interaction between oxygen radicals and gastric mucin. Am J Physiol-Gastr L 1987, 253:G93-G96.
- [20]Neuhaus H, Van der Marel M, Caspari N, Meyer W, Enss ML, Steinhagen D: Biochemical and histochemical study on the intestinal mucosa of the common carp Cyprinus carpio L., with special consideration of mucin glycoproteins. J Fish Biol 2007, 70:1523-1534.
- [21]Martinez-Alvarez RM, Morales AE, Sanz A: Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fisher 2005, 15:75-88.
- [22]Dandapat J, Chainy GBN, Janardhana RK: Dietary vitamin-E modulates antioxidant defence system in giant freshwater prawn, Macrobrachium rosenbergii. Comp Biochem Phys C 2000, 127:101-115.
- [23]Lu SC: Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J 1999, 13:1169-1183.
- [24]Ross-Inta CM, Zhang YF, Almendares A, Giulivi C: Threonine-deficient diets induced changes in hepatic bioenergetics. Am J Physiol-Gastr L 2009, 296:G1130-G1139.
- [25]Rudneva I: Blood antioxidant system of Black Sea elasmobranch and teleosts. Comp Biochem Phys C 1997, 118:255-260.
- [26]Sidransky H, Rechcigl MJ: Chemical pathology of acute amino acid deficiencies. V. Comparison of morphologic and biochemical changes in young rats fed protein-free or threonine-free diets. J Nutr 1962, 78:269-277.
- [27]Zhu H, Zhang L, Itoh K, Yamamoto M, Ross D, Trush MA, et al.: Nrf2 controls bone marrow stromal cell susceptibility to oxidative and electrophilic stress. Free Radical Bio Med 2006, 41:132-143.
- [28]Patel R, Maru G: Polymeric black tea polyphenols induce phase II enzymes via Nrf2 in mouse liver and lungs. Free Radical Bio Med 2008, 44:1897-1911.
- [29]Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y, et al.: The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol 2009, 29:493-502.
- [30]Liu F, Xia JH, Bai ZY, Fu JJ, Li JL, Yue GH: High genetic diversity and substantial population differentiation in grass carp (Ctenopharyngodon idella) revealed by microsatellite analysis. Aquaculture 2009, 297:51-56.
- [31]Ding Y, Liu R, Rong J, Liu Y, Zhao S, Xiong S: Rheological behavior of heat-induced actomyosin gels from yellowcheek carp and grass carp. Eur Food Res Technol 2012, 235:245-251.
- [32]Benakappa S, Varghese T: Dietary threonine requirement of Indian major carp, Cirrhinus Mrigala (Hamilton), juveniles. Isr J Aquacult-Bamid 2002, 54:183-188.
- [33]Abidi SF, Khan MA: Dietary threonine requirement of fingerling Indian major carp, Labeo rohita (Hamilton). Aquac Res 2008, 39:1498-1505.
- [34]Li P, Burr GS, Wen Q, Goff JB, Murthy HS, Gatlin DM III: Dietary sufficiency of sulfur amino acid compounds influences plasma ascorbic acid concentrations and liver peroxidation of juvenile hybrid striped bass (Morone chrysops × M. saxatilis). Aquaculture 2009, 287:414-418.
- [35]Shiau SY, Lo PS: Dietary choline requirements of juvenile hybrid tilapia, Oreochromis niloticus × O. aureus. J Nutr 2000, 130:100-103.
- [36]Cai X, Luo L, Xue M, Wu X, Zhan W: Growth performance, body composition and phosphorus availability of juvenile grass carp (Ctenopharyngodon idellus) as affected by diet processing and replacement of fishmeal by detoxified castor bean meal. Aquacult Nutr 2005, 11:293-299.
- [37]Berdikova Bohne VJ, Hamre K, Arukwe A: Hepati metabolism, phase I and II biotransformation enzymes in Atlantic salmon (Salmo salar, L.) during a 12 week feeding period with graded levels of the synthetic antioxidant, ethoxyquin. Food Chem Toxicol 2007, 45:733-746.
- [38]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
- [39]Bergmeyer HU, Bernt E: Glutamate-oxaloacetate transaminase. Methods of Enzymatic Analysis 1974, 2:727-733.
- [40]Bergmeyer HU, Bernt E: Glutamate-oxaloacetate transaminase, UV-assay, manual method. In Methods of Enzymatic Analysis. Edited by Bergmeyer HU. Academic, New York; 1974:2727-2733.
- [41]Hummel BCW: A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can J of Physiol Pharmacol 1959, 37:1393-1399.
- [42]Furne M, Hidalgo M, Lopez A, García-Gallego M, Morales A, Domezain A, et al.: A comparative study. Aquaculture 2005, 250:391-398.
- [43]Bessey OA, Lowry OH, Brock MJ: A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J Biol Chem 1946, 164:321-329.
- [44]Rosalki S, Rau D, Lehmann D, Prentice M: Determination of serum gamma-glutamyl transpeptidase activity and its clinical applications. Ann Clin Biochem 1970, 7:143-147.
- [45]Tanzer ML, Gilvarg C: Creatine and creatine kinase measurement. J Biol Chem 1959, 234:3201-3204.
- [46]Weng CF, Chiang CC, Gong HY, Chen MHC, Lin CJF, Huang WT, et al.: Acute changes in gill Na + /K + -ATPase and creatine kinase in response to salinity changes in the Euryhaline Teleost, Tilapia (Oreochromis mossambicus). Physiol Biochem Zool 2002, 75:29-36.
- [47]Zhang XD, Zhu YF, Cai LS, Wu TX: Effects of fasting on the meat quality and antioxidant defenses of market-size farmed large yellow croaker (Pseudosciaena crocea). Aquaculture 2008, 280:136-139.
- [48]BaltacIoglu E, AkalIn FA, Alver A, Deger O, Karabulut E: Protein carbonyl levels in serum and gingival crevicular fluid in patients with chronic periodontitis. Arch Oral Biol 2008, 53:716-722.
- [49]VVardi N, Parlakpinar H, Ozturk F, Ates B, Gul M, Cetin A, et al.: Potent protective effect of apricot and β-carotene on methotrexate-induced intestinal oxidative damage in rats. Food Chem Toxicol 2008, 46:3015-3022.
- [50]Lora J, Alonso FJ, Segura JA, Lobo C, Márquez J, Matés JM: Antisense glutaminase inhibition decreases glutathione antioxidant capacity and increases apoptosis in Ehrlich ascitic tumour cells. Eur J Biochem 2004, 271:4298-4306.
- [51]Aebi H: Catalase in vitro. Methods Enzymol 1984, 105:121-126.
- [52]Lushchak VI, Lushchak LP, Mota AA, Hermes-Lima M: Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am J Physiol-Reg I 2001, 280:R100-R107.
- [53]Ramaswamy M, Thangavel P, Selvam NP: Glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) enzyme activities in different tissues of Sarotherodon mossambicus (Peters) exposed to a carbamate pesticide, carbaryl. Pestic Sci 1999, 55:1217-1221.
- [54]Wilfred G, Varma TN: Studies on experimental protein malnutrition. II. Effect of threonine deficiency on some aspects of glycogen metabolism in rats. Indian J Biochem 1967, 4:111-113.
- [55]Rosen F, Roberts NR, Nichol CA CA: Glucocorticosteroids and transaminase activity. I. Increased activity of glutamic-pyruvic transaminase in four conditions associated with gluconeogenesis. J Bio Chem 1959, 234:476-480.
- [56]Le Floch N, Obled C, Seve B: In vivo threonine oxidation in growing pigs fed on diets with graded levels of threonine. Brit J Nutr 1996, 75:825-837.
- [57]Darling PB, Dunn M, Sarwar G, Brookes S, Ball RO, Pencharz PB: Threonine kinetics in preterm infants fed their mothers' milk or formula with various ratios of whey to casein. Am J Clin Nutr 1999, 69:105-114.
- [58]Lin Y, Zhou XQ: Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 2006, 256:389-394.
- [59]Zambonino Infante J, Cahu C: Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Phys C 2001, 130:477-487.
- [60]Hokin L: Amino-acid requirements of amylase synthesis by pigeon-pancreas slices. Biochem J 1951, 50:216-220.
- [61]Yang SI, Mitsuhiro F, Tatsuo M, Jun-Ichi O: Responses of the pancreatic digestive enzyme secretion to various combinations of amino acids and cholecystokinin in chicks (Gallus domesticus). Comp Biochem Phys A 1989, 93:703-706.
- [62]Stole E, Seddon AP, Wellner D, Meister A: Identification of a highly reactive threonine residue at the active site of gamma-glutamyl transpeptidase. Proc Natl Acad Sci U S A 1990, 87:1706-1709.
- [63]Stolz M, Hornemann T, Schlattner U, Wallimann T: Mutation of conserved active-site threonine residues in creatine kinase affects autophosphorylation and enzyme kinetics. Biochem J 2002, 363:785-792.
- [64]Ghosh J, Das J, Manna P, Sil PC: Cytoprotective effect of arjunolic acid in response to sodium fluoride mediated oxidative stress and cell death via necrotic pathway. Toxicol in Vitro 2008, 22:1918-1926.
- [65]Riisom T, Sims R, Fioriti JA: Effect of amino acids on the autoxidation of safflower oil in emulsions. J Am Oil Chem Soc 1980, 57:354-359.
- [66]Nordberg J, Arnér ESJ: Reactive oxygen species, antioxidants, and the mammalian thioredoxin system1. Free Radical Bio Med 2001, 31:1287-1312.
- [67]Nichols NL, Bertolo RF: Luminal threonine concentration acutely affects intestinal mucosal protein and mucin synthesis in piglets. J Nutr 2008, 138:1298-1303.
- [68]Faure M, Moennoz D, Montigon F, Mettraux C, Breuille D, Ballevre O: Dietary threonine restriction specifically reduces intestinal mucin. J Nutr 2005, 135:486-491.
- [69]Circu ML, Aw TY: Redox biology of the intestine. Free Radical Res 2011, 45(11–12):1245-1266.
- [70]Aw TY: Biliary glutathione promotes the mucosal metabolism of luminal peroxidized lipids by rat small intestine in vivo. J Clin Invest 1994, 94:12-18.
- [71]Lauterburg BH, Smith CV, Hughes H, Mitchell J: Biliary excretion of glutathione and glutathione disulfide in the rat. Regulation and response to oxidative stress. J Clin Invest 1984, 73:124-133.
- [72]Iantomasi T, Favilli F, Marraccini P, Magaldi T, Bruni P, Vincenzini MT: Glutathione transport system in human small intestine epithelial cells. BBA-Biomembranes 1997, 1330:274-283.
- [73]Matsumoto A, Gow AJ: Membrane transfer of S-nitrosothiols. Nitric Oxide 2011, 25:102-107.
- [74]Elia AC, Anastasi V, Dörr AJM: Hepatic antioxidant enzymes and total glutathione of Cyprinus carpio exposed to three disinfectants, chlorine dioxide, sodium hypochlorite and peracetic acid, for superficial water potabilization. Chemosphere 2006, 64:1633-1641.
- [75]Ogus H, Ozer N: Human jejunal glutathione reductase: purification and evaluation of the NADPH- and glutathione-induced changes in redox state. Biochem Med Metab Biol 1991, 45:65-73.
- [76]Kaplowitz N, Aw TY, Ookhtens M: The regulation of hepatic glutathione. Ann Rev Pharmacol Toxicol 1985, 25:715-744.
- [77]Lo SC, Li X, Henzl MT, Beamer LJ, Hannink M: Structure of the Keap1: Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J 2006, 25:3605-3617.
- [78]Lin YH, Shiau SY: Dietary selenium requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 2005, 250:356-363.
- [79]Wang X, Qiao S, Yin Y, Yue L, Wang Z, Wu G: A deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs. J Nutr 2007, 137:1442-1446.
- [80]Tabatabaie T, Floyd RA: Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping agents. Arch Biochem Biophys 1994, 314:112-119.