期刊论文详细信息
Clinical Epigenetics
Inflammation triggers specific microRNA profiles in human adipocytes and macrophages and in their supernatants
José Manuel Fernández-Real3  Wifredo Ricart3  Mònica Sabater2  Núria Fuentes-Batllevell2  José María Moreno-Navarrete3  Josep María Mercader1  María Moreno2  Francisco José Ortega3 
[1] Joint BSC-CRG-IRB program on Computational Biology, Barcelona Supercomputing Center, Baldiri Reixac 10, Barcelona, 08028, Spain;Department of Diabetes, Endocrinology and Nutrition (UDEN), Institut d’Investigació Biomédica de Girona (IdIBGi), Avinguda de França s/n, Girona, 17007, Spain;CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03) and Instituto de Salud Carlos III (ISCIII), Sinesio Delgado 4, Madrid, 28029, Spain
关键词: Inflammation;    Obesity;    Adipose tissue;    Adipocytes;    Macrophages;    Profiling;    RT-PCR;    microRNAs;   
Others  :  1206107
DOI  :  10.1186/s13148-015-0083-3
 received in 2015-01-27, accepted in 2015-04-07,  发布年份 2015
PDF
【 摘 要 】

Background

The relevance of microRNAs (miRNAs) in adipose tissue is increasingly recognized, being intrinsically linked to different pathways, including obesity-related inflammation. In this study, we aimed to characterize the changes induced by inflammation on the miRNA pattern of human adipocytes and macrophages. Therefore, an extensive profile of 754 common miRNAs was assessed in cells (human primary mature adipocytes, and the macrophage-like cell line THP-1) and in their supernatants (SN) using TaqMan low-density arrays. These profiles were evaluated at the baseline and after administration of lipopolysaccharide (LPS, 10 ng/ml) and LPS-conditioned medium from M1 macrophages (MCM, 5%). The miRNAs that experienced the most dramatic changes were studied in subcutaneous human adipose tissue before and approximately 2 years after bariatric surgery-induced weight loss.

Results

Differentiated adipocytes expressed 169 miRNAs, being 85 detectable in the SN. In M1 macrophages, 183 miRNAs were detected, being 106 also present in the SN. Inflammation led to an increased number of miRNAs detectable in cells and in their SNs in both adipocytes (+8.3% and +24.7%) and M1 macrophages (+1.4% and +5%, respectively). Indeed, under inflammatory conditions, adipocytes and M1 macrophages shared the expression of 147 (+9%) miRNAs, and 100 (+41%) common miRNAs were found in their SNs. Twelve of these factors were also linked to inflammation in whole adipose tissue from obese subjects. Interestingly, miR-221 (2-fold, P = 0.002), miR-222 (2.5-fold, P = 0.04), and miR-155 (5-fold, P = 0.015) were increased in inflamed adipocytes and in their SNs (15-, 6-, and 4-fold, respectively, all P < 0.001). Furthermore, their expressions in human adipose tissue concordantly decreased after weight loss (−51%, P = 0.003, −49%, P = 0.03, and −54.4%, P = 0.005, respectively).

Conclusions

Inflammation induces a specific miRNA pattern in adipocytes and M1 macrophages, with impact on the physiopathology of obesity-induced inflammation of adipose tissue. The crosstalk between cells should be investigated further.

【 授权许可】

   
2015 Ortega et al.; licensee Biomed Central.

【 预 览 】
附件列表
Files Size Format View
20150527033426906.pdf 1286KB PDF download
Figure 3. 57KB Image download
Figure 2. 57KB Image download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Tilg H, Moschen AR: Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 2006, 6(10):772-83.
  • [2]Delarue J, Magnan C: Free fatty acids and insulin resistance. Curr Opin Clin Nutr Metab Care 2007, 10(2):142-8.
  • [3]Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT: MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011, 13(4):423-33.
  • [4]Clement K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA, et al.: Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. Faseb J 2004, 18(14):1657-69.
  • [5]Bassols J, Ortega FJ, Moreno-Navarrete JM, Peral B, Ricart W, Fernandez-Real JM: Study of the proinflammatory role of human differentiated omental adipocytes. J Cell Biochem 2009, 107(6):1107-17.
  • [6]Permana PA, Menge C, Reaven PD: Macrophage-secreted factors induce adipocyte inflammation and insulin resistance. Biochem Biophys Res Commun 2006, 341(2):507-14.
  • [7]Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, et al.: Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 2005, 54(8):2277-86.
  • [8]Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003, 112(12):1796-808.
  • [9]Meijer K, de Vries M, Al-Lahham S, Bruinenberg M, Weening D, Dijkstra M, et al.: Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages. PLoS One 2011, 6(3):e17154.
  • [10]Skurk T, Herder C, Kraft I, Muller-Scholze S, Hauner H, Kolb H: Production and release of macrophage migration inhibitory factor from human adipocytes. Endocrinology 2005, 146(3):1006-11.
  • [11]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-33.
  • [12]Hilton C, Neville MJ, Karpe F: MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int J Obes (Lond) 2013, 37(3):325-32.
  • [13]Rottiers V, Naar AM: MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 2012, 13(4):239-50.
  • [14]Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A, et al.: MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 2010, 5(2):e9022.
  • [15]Oger F, Gheeraert C, Mogilenko D, Benomar Y, Molendi-Coste O, Bouchaert E, et al.: Cell-specific dysregulation of microRNA expression in obese white adipose tissue. J Clin Endocrinol Metab 2014, 99(8):2821-33.
  • [16]Mudhasani R, Puri V, Hoover K, Czech MP, Imbalzano AN, Jones SN: Dicer is required for the formation of white but not brown adipose tissue. J Cell Physiol 2011, 226(5):1399-406.
  • [17]Ortega FJ, Mercader JM, Catalan V, Moreno-Navarrete JM, Pueyo N, Sabater M, et al.: Targeting the circulating microRNA signature of obesity. Clin Chem 2013, 59(5):781-92.
  • [18]Dankel SN, Fadnes DJ, Stavrum AK, Stansberg C, Holdhus R, Hoang T, et al.: Switch from stress response to homeobox transcription factors in adipose tissue after profound fat loss. PLoS One 2010, 5(6):e11033.
  • [19]Ogawa R, Tanaka C, Sato M, Nagasaki H, Sugimura K, Okumura K, et al.: Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. Biochem Biophys Res Commun 2010, 398(4):723-9.
  • [20]Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, et al.: Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011, 2:282.
  • [21]Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007, 9(6):654-9.
  • [22]Thery C, Ostrowski M, Segura E: Membrane vesicles as conveyors of immune responses. NatRevImmunol 2009, 9(8):581-93.
  • [23]Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, et al.: Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 2009, 58(11):2498-505.
  • [24]Chartoumpekis DV, Zaravinos A, Ziros PG, Iskrenova RP, Psyrogiannis AI, Kyriazopoulou VE, et al.: Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS One 2012, 7(4):e34872.
  • [25]Fernandez-Messina L, Gutierrez-Vazquez C, Rivas-Garcia E, Sanchez-Madrid F, de la Fuente H: Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell 2015, 107(3):61-77.
  • [26]Nesca V, Guay C, Jacovetti C, Menoud V, Peyot ML, Laybutt DR, et al.: Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 2013, 56(10):2203-12.
  • [27]Lv YC, Tang YY, Peng J, Zhao GJ, Yang J, Yao F, et al.: MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1. Atherosclerosis 2014, 236(1):215-26.
  • [28]Hulsmans M, De Keyzer D, Holvoet P: MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. Faseb J 2011, 25(8):2515-27.
  • [29]O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D: MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 2007, 104(5):1604-9.
  • [30]Xie H, Lim B, Lodish HF: MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009, 58(5):1050-7.
  • [31]Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG: DIANA-mirPath: Integrating human and mouse microRNAs in pathways. Bioinformatics 2009, 25(15):1991-3.
  • [32]McCurdy CE, Schenk S, Holliday MJ, Philp A, Houck JA, Patsouris D, et al.: Attenuated Pik3r1 expression prevents insulin resistance and adipose tissue macrophage accumulation in diet-induced obese mice. Diabetes 2012, 61(10):2495-505.
  • [33]Prada PO, Pauli JR, Ropelle ER, Zecchin HG, Carvalheira JB, Velloso LA, et al.: Selective modulation of the CAP/Cbl pathway in the adipose tissue of high fat diet treated rats. FEBS Lett 2006, 580(20):4889-94.
  • [34]Charriere G, Cousin B, Arnaud E, Andre M, Bacou F, Penicaud L, et al.: Preadipocyte conversion to macrophage. Evidence of plasticity. J Biol Chem 2003, 278(11):9850-5.
  • [35]Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW: Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 2004, 145(5):2273-82.
  • [36]Cousin B, Munoz O, Andre M, Fontanilles AM, Dani C, Cousin JL, et al.: A role for preadipocytes as macrophage-like cells. Faseb J 1999, 13(2):305-12.
  • [37]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al.: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3(7):RESEARCH0034. BioMed Central Full Text
  • [38]Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, et al.: TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 2012, 40(Database issue):D222-9.
  文献评价指标  
  下载次数:33次 浏览次数:10次