期刊论文详细信息
Journal of Biomedical Science
Hyaluronan and cardiac regeneration
Claudio Muscari2  Carlo Guarnieri2  Claudio Marcello Caldarera2  Emanuele Giordano2  Marco Govoni1  Francesca Bonafè2 
[1] BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy;National Institute for Cardiovascular Research (INRC), Bologna, Italy
关键词: Adult stem cells;    Cardiac regeneration;    Myocardial infarction;    Hyaluronan;   
Others  :  1146118
DOI  :  10.1186/s12929-014-0100-4
 received in 2014-08-06, accepted in 2014-10-16,  发布年份 2014
PDF
【 摘 要 】

Hyaluronan (HA) is abundantly expressed in several human tissues and a variety of roles for HA has been highlighted. Particularly relevant for tissue repair, HA is actively produced during tissue injury, as widely evidenced in wound healing investigations. In the heart HA is involved in physiological functions, such as cardiac development during embryogenesis, and in pathological conditions including atherosclerosis and myocardial infarction. Moreover, owing to its relevant biological properties, HA has been widely used as a biomaterial for heart regeneration after a myocardial infarction. Indeed, HA and its derivatives are biodegradable and biocompatible, promote faster healing of injured tissues, and support cells in relevant processes including survival, proliferation, and differentiation. Injectable HA-based therapies for cardiovascular disease are gaining growing attention because of the benefits obtained in preclinical models of myocardial infarction. HA-based hydrogels, especially as a vehicle for stem cells, have been demonstrated to improve the process of cardiac repair by stimulating angiogenesis, reducing inflammation, and supporting local and grafted cells in their reparative functions. Solid-state HA-based scaffolds have been also investigated to produce constructs hosting mesenchymal stem cells or endothelial progenitor cells to be transplanted onto the infarcted surface of the heart. Finally, applying an ex-vivo mechanical stretching, stem cells grown in HA-based 3D scaffolds can further increase extracellular matrix production and proneness to differentiate into muscle phenotypes, thus suggesting a potential strategy to create a suitable engineered myocardial tissue for cardiac regeneration.

【 授权许可】

   
2014 Bonafè et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150403091456992.pdf 1140KB PDF download
Figure 3. 72KB Image download
Figure 2. 45KB Image download
Figure 1. 70KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Maclennan AP: The production of capsules, hyaluronic acid and hyaluronidase by 25 strains of group C streptococci. J Gen Microbiol 1956, 15(3):485-491.
  • [2]DeAngelis PL, Papaconstantinou J, Weigel PH: Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria. J Biol Chem 1993, 268(20):14568-14571.
  • [3]Prehm P: Release of hyaluronate from eukaryotic cells. Biochem J 1990, 67(1):185-189.
  • [4]Itano N: Simple primary structure, complex turnover regulation and multiple roles of hyaluronan. J Biochem 2008, 144(2):131-137.
  • [5]DeAngelis PL, Weigel PH: Immunochemical confirmation of the primary structure of streptococcal hyaluronan synthase and synthesis of high molecular weight product by the recombinant enzyme. Biochemistry 1994, 33(31):9033-9039.
  • [6]Watanabe K, Yamaguchi Y: Molecular identification of a putative human hyaluronan synthase. J Biol Chem 1996, 271(38):22945-22948.
  • [7]Spicer AP, Olson JS, McDonald JA: Molecular cloning and characterization of a cDNA encoding the third putative mammalian hyaluronan synthase. J Biol Chem 1997, 272(14):8957-8961.
  • [8]Csóka AB, Scherer SW, Stern R: Expression analysis of six paralogous human hyaluronidase genes clustered on chromosomes 3p21 and 7q31. Genomics 1999, 60(3):356-361.
  • [9]Seyfried NT, McVey GF, Almond A, Mahoney DJ, Dudhia J, Day AJ: Expression and purification of functionally active hyaluronan-binding domains from human cartilage link protein, aggrecan and versican: formation of ternary complexes with defined hyaluronan oligosaccharides. J Biol Chem 2005, 280(7):5435-5448.
  • [10]Huang L, Yoneda M, Kimata K: A serum-derived hyaluronan associated protein (SHAP) is the heavy chain of the inter alpha trypsin inhibitor. J Biol Chem 1993, 268(35):26725-26730.
  • [11]Ambrosio L, Borzacchiello A, Netti PA, Nicolais L: Rheological study on hyaluronic acid and its derivative solutions. J Macromol Sci Pure Appl Chem 1999, A36(7¿8):991-1000.
  • [12]McGary CT, Weigel JA, Weigel PH: Study of hyaluronan-binding proteins and receptors using iodinated hyaluronan derivatives. Methods Enzymol 2003, 363:354-365.
  • [13]Sokolowska M, Chen LY, Eberlein M, Martinez-Anton A, Liu Y, Alsaaty S, Qi HY, Logun C, Horton M, Shelhamer JH: Low molecular weight hyaluronan activates cytosolic phospholipase A2? and eicosanoid production in monocytes and macrophages. J Biol Chem 2014, 289(7):4470-4488.
  • [14]Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B: CD44 is the principal cell surface receptor for hyaluronate. Cell 1990, 61(7):1303-1313.
  • [15]Campo GM, Avenoso A, D'Ascola A, Prestipino V, Scuruchi M, Nastasi G, Calatroni A, Campo S: Hyaluronan differently modulates TLR-4 and the inflammatory response in mouse chondrocytes. Biofactors 2012, 38(1):69-76.
  • [16]Slevin M, Krupinski J, Gaffney J, Matou S, West D, Delisser H, Savani RC, Kumar S: Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biol 2007, 26(1):58-68.
  • [17]Negi LM, Talegaonkar S, Jaggi M, Ahmad FJ, Iqbal Z, Khar RK: Role of CD44 in tumour progression and strategies for targeting. J Drug Target 2012, 20(7):561-573.
  • [18]Oksala O, Salo T, Tammi R, Kakkien L, Jalkanen M, Inki P, Larjava H: Expression of proteoglycans and hyaluronan during wound healing. J Histochem Cytochem 1995, 43(2):125-135.
  • [19]Rilla K, Pasonen-Seppänen S, Deen AJ, Koistinen VV, Wojciechowski S, Oikari S, Kärnä R, Bart G, Törrönen K, Tammi RH, Tammi MI: Hyaluronan production enhances shedding of plasma membrane-derived microvesicles. Exp Cell Res 2013, 319(13):2006-2018.
  • [20]Noble PW, McKee CM, Cowman M, Shin HS: Hyaluronan fragments activate an NF-kappa B/I-kappa B alpha autoregulatory loop in murine macrophages. J Exp Med 1996, 183(5):2373-2378.
  • [21]Eberlein M, Scheibner KA, Black KE, Collins SL, Chan-Li Y, Powell JD, Horton MR: Anti-oxidant inhibition of hyaluronan fragment-induced inflammatory gene expression. J Inflamm (Lond) 2008, 5:20.
  • [22]Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, Homer RJ, Goldstein DR, Bucala R, Lee PJ, Medzhitov R, Noble PW: Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 2005, 11(11):1173-1179.
  • [23]Puré E, Assoian RK: Rheostatic signaling by CD44 and hyaluronan. Cell Signal 2009, 21(5):651-655.
  • [24]West DC, Hampson IN, Arnold F, Kumar S: Angiogenesis induced by degradation products of hyaluronic acid. Science 1985, 228(4705):1324-1326.
  • [25]Matou-Nasri S, Gaffney J, Kumar S, Slevin M: Oligosaccharides of hyaluronan induce angiogenesis through distinct CD44 and RHAMM-mediated signalling pathways involving Cdc2 and gamma-adducin. Int J Oncol 2009, 35(4):761-773.
  • [26]Deed R, Rooney P, Kumar P, Norton JD, Smith J, Freemont AJ, Kumar S: Early-response gene signalling is induced by angioangiogenic oligosaccharides of hyaluronan in endothelial cells. Inhibition by non-angiogenic, high-molecular-weight hyaluronan. Int J Cancer 1997, 71(2):251-256.
  • [27]Vigetti D, Karousou E, Viola M, Deleonibus S, De Luca G, Passi A: Hyaluronan: biosynthesis and signaling. Biochim Biophys Acta 2014, 1840(8):2452-2459.
  • [28]Sugahara KN, Murai T, Nishinakamura H, Kawashima H, Saya H, Miyasaka M: Hyaluronan oligosaccharides induce CD44 cleavage and promote cell migration in CD44-expressing tumor cells. J Biol Chem 2003, 278(34):32259-32265.
  • [29]Klingbeil P, Marhaba R, Jung T, Kirmse R, Ludwig T, Zöller M: CD44 variant isoforms promote metastasis formation by a tumor cell-matrix cross-talk that supports adhesion and apoptosis resistance. Mol Cancer Res 2009, 7(2):168-179.
  • [30]Fieber C, Baumann P, Vallon R, Termeer C, Simon JC, Hofmann M, Angel P, Herrlich P, Sleeman JP: Hyaluronan-oligosaccharide-induced transcription of metalloproteases. J Cell Sci 2004, 117:359-367.
  • [31]Fenderson BA, Stamenkovic I, Aruffo A: Localization of hyaluronan in mouse embryos during implantation, gastrulation and organogenesis. Differentiation 1993, 54(2):85-98.
  • [32]Tammi M, Seppälä PO, Lehtonen A, Möttönen M: Connective tissue components in normal and atherosclerotic human coronary arteries. Atherosclerosis 1978, 29(2):191-194.
  • [33]Waldenström A, Martinussen HJ, Gerdin B, Hällgren R: Accumulation of hyaluronan and tissue edema in experimental myocardial infarction. J Clin Invest 1991, 88(5):1622-1628.
  • [34]Huebener P, Abou-Khamis T, Zymek P, Bujak M, Ying X, Chatila K, Haudek S, Thakker G, Frangogiannis NG: CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol 2008, 180(4):2625-2633.
  • [35]Shetlar MR, Shetlar CL, Kischer CW: Healing of myocardial infarction in animal models. Tex Rep Biol Med 1979, 39:339-355.
  • [36]McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come PC, Nakao S, Alderman JD, Ferguson JJ, Safian RD, Grossman W: Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 1986, 74(4):693-702.
  • [37]Bulpitt P, Aeschlimann D: New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res 1999, 47(2):152-169.
  • [38]Maleki A, Kjøniksen AL, Nyström B: Characterization of the chemical degradation of hyaluronic acid during chemical gelation in the presence of different cross-linker agents. Carbohydr Res 2007, 342(18):2776-2792.
  • [39]Collins MN, Birkinshaw C: Physical properties of crosslinked hyaluronic acid hydrogels. J Mater Sci Mater Med 2008, 19(11):3335-3343.
  • [40]Palumbo FS, Pitarresi G, Albanese A, Calascibetta F, Giammona G: Self-assembling and auto-crosslinkable hyaluronic acid hydrogels with a fibrillar structure. Acta Biomater 2010, 6(1):195-204.
  • [41]Pouyani T, Prestwich GD: Biotinylated hyaluronic acid: a new tool for probing hyaluronate-receptor interactions. Bioconjug Chem 1994, 5(4):370-372.
  • [42]Tomihata K, Ikada Y: Crosslinking of hyaluronic acid with glutaraldehyde. J Polym Sci A Polym Chem 2000, 35(16):3553-3559.
  • [43]Larsen NE, Pollak CT, Reiner K, Leshchiner E, Balazs EA: Hylan gel biomaterial: dermal and immunologic compatibility. J Biomed Mater Res 1993, 27(9):1129-1134.
  • [44]Chen J, Peng C, Nie J, Kennedy JF, Ma G: Lyophilization as a novel approach for preparation of water resistant HA fiber membranes by crosslinked with EDC. Carbohydr Polym 2014, 102:8-11.
  • [45]Calderon L, Collin E, Velasco-Bayon D, Murphy M, O'Halloran D, Pandit A: Type II collagen-hyaluronan hydrogel¿a step towards a scaffold for intervertebral disc tissue engineering. Eur Cell Mater 2010, 20:134-148.
  • [46]Huang B, Li CQ, Zhou Y, Luo G, Zhang CZ: Collagen II/hyaluronan/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering. J Biomed Mater Res B Appl Biomater 2010, 92(2):322-331.
  • [47]Zhao XB, Fraser JE, Alexander C, Lockett C, White BJ: Synthesis and characterization of a novel double crosslinked hyaluronan hydrogel. J Mater Sci Mater Med 2002, 13(1):11-16.
  • [48]Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG: Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 2009, 30(36):6844-6853.
  • [49]Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ: A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater 2014, 10(1):214-223.
  • [50]Benedetti L, Cortivo R, Berti T, Berti A, Pea F, Mazzo M, Moras M, Abatangelo G: Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats. Biomaterials 1993, 14(15):1154-1160.
  • [51]Li L, Wang N, Jin X, Deng R, Nie S, Sun L, Wu Q, Wei Y, Gong C: Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 2014, 35(12):3903-3917.
  • [52]Magnani A, Albanese A, Lamponi S, Barbucci R: Blood-interaction performance of differently sulphated hyaluronic acids. Thromb Res 1996, 81(3):383-395.
  • [53]Sakurai K, Miyazaki K, Kodera Y, Nishimura H, Shingu M, Inada Y: Anti-inflammatory activity of superoxide dismutase conjugated with sodium hyaluronate. Glycoconj J 1997, 14(6):723-728.
  • [54]Ventura C, Cantoni S, Bianchi F, Lionetti V, Cavallini C, Scarlata I, Foroni L, Maioli M, Bonsi L, Alviano F, Fossati V, Bagnara GP, Pasquinelli G, Recchia FA, Perbellini A: Hyaluronan mixed esters of butyric and retinoic acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem 2007, 282(19):14243-14252.
  • [55]Collins MN, Birkinshaw C: Hyaluronic acid based scaffolds for tissue engineering - a review. Carbohydr Polym 2013, 92(2):1262-1279.
  • [56]Donegan GC, Hunt JA, Rhodes N: Investigating the importance of flow when utilizing hyaluronan scaffolds for tissue engineering. J Tissue Eng Regen Med 2010, 4(2):83-95.
  • [57]Damodarasamy M, Johnson RS, Bentov I, MacCoss MJ, Vernon RB, Reed MJ: Hyaluronan enhances wound repair and increases collagen III in aged dermal wounds. Wound Repair Regen 2014, 22(4):521-526.
  • [58]Yoon SJ, Fang YH, Lim CH, Kim BS, Son HS, Park Y, Sun K: Regeneration of ischemic heart using hyaluronic acid-based injectable hydrogel. J Biomed Mater Res B Appl Biomater 2009, 91(1):163-171.
  • [59]Yoon SJ, Hong S, Fang YH, Song M, Son KH, Son HS, Kim SK, Sun K, Park Y: Differential regeneration of myocardial infarction depending on the progression of disease and the composition of biomimetic hydrogel. J Biosci Bioeng 2014, 18(4):461-468.
  • [60]Tous E, Ifkovits JL, Koomalsingh KJ, Shuto T, Soeda T, Kondo N, Gorman JH 3rd, Gorman RC, Burdick JA: Influence of injectable hyaluronic acid hydrogel degradation behavior on infarction-induced ventricular remodeling. Biomacromolecules 2011, 12(11):4127-4135.
  • [61]Kichula ET, Wang H, Dorsey SM, Szczesny SE, Elliott DM, Burdick JA, Wenk JF: Experimental and computational investigation of altered mechanical properties in myocardium after hydrogel injection. Ann Biomed Eng 2014, 42(7):1546-1556.
  • [62]Purcell BP, Elser JA, Mu A, Margulies KB, Burdick JA: Synergistic effects of SDF-1? chemokine and hyaluronic acid release from degradable hydrogels on directing bone marrow derived cell homing to the myocardium. Biomaterials 2012, 33(31):7849-7857.
  • [63]Tsuda M, Makino Y, Iwahara T, Nishihara H, Sawa H, Nagashima K, Hanafusa H, Tanaka S: Crk associates with ERM proteins and promotes cell motility toward hyaluronic acid. J Biol Chem 2004, 279(45):46843-46850.
  • [64]Nandi A, Estess P, Siegelman M: Bimolecular complex between rolling and firm adhesion receptors required for cell arrest; CD44 association with VLA-4 in T cell extravasation. Immunity 2004, 20(4):455-465.
  • [65]MacArthur JW Jr, Purcell BP, Shudo Y, Cohen JE, Fairman A, Trubelja A, Patel J, Hsiao P, Yang E, Lloyd K, Hiesinger W, Atluri P, Burdick JA, Woo YJ: Sustained release of engineered stromal cell-derived factor 1-? from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction. Circulation 2013, 128(11 Suppl 1):S79-S86.
  • [66]Eckhouse SR, Purcell BP, McGarvey JR, Lobb D, Logdon CB, Doviak H, O'Neill JW, Shuman JA, Novack CP, Zellars KN, Pettaway S, Black RA, Khakoo A, Lee T, Mukherjee R, Gorman JH, Gorman RC, Burdick JA, Spinale FG: Local hydrogel release of recombinant TIMP-3 attenuates adverse left ventricular remodeling after experimental myocardial infarction. Sci Transl Med 2014, 6(223):223ra21.
  • [67]Lionetti V, Cantoni S, Cavallini C, Bianchi F, Valente S, Frascari I, Olivi E, Aquaro GD, Bonavita F, Scarlata I, Maioli M, Vaccari V, Tassinari R, Bartoli A, Recchia FA, Pasquinelli G, Ventura C: Hyaluronan mixed esters of butyric and retinoic acid affording myocardial survival and repair without stem cell transplantation. J Biol Chem 2010, 285(13):9949-9961.
  • [68]Simioniuc A, Campan M, Lionetti V, Marinelli M, Aquaro GD, Cavallini C, Valente S, Di Silvestre D, Cantoni S, Bernini F, Simi C, Pardini S, Mauri P, Neglia D, Ventura C, Pasquinelli G, Recchia FA: Placental stem cells pre-treated with a hyaluronan mixed ester of butyric and retinoic acid to cure infarcted pig hearts: a multimodal study. Cardiovasc Res 2011, 90(3):546-556.
  • [69]Ventura C, Maioli M, Asara Y, Santoni D, Scarlata I, Cantoni S, Perbellini A: Butyric and retinoic mixed ester of hyaluronan. A novel differentiating glycoconjugate affording a high throughput of cardiogenesis in embryonic stem cells. J Biol Chem 2004, 279(22):23574-23579.
  • [70]Wheatley SC, Isacke CM: Induction of a hyaluronan receptor, CD44, during embryonal carcinoma and embryonic stem cell differentiation. Cell Adhes Commun 1995, 3(3):217-230.
  • [71]Chen CH, Wang SS, Wei EI, Chu TY, Hsieh PC: Hyaluronan enhances bone marrow cell therapy for myocardial repair after infarction. Mol Ther 2013, 21(3):670-679.
  • [72]Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg RV, Kögler G, Wernet P: Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002, 106(15):1913-1918.
  • [73]Chen CH, Chang MY, Wang SS, Hsieh PC: Injection of autologous bone marrow cells in hyaluronan hydrogel improves cardiac performance after infarction in pigs. Am J Physiol Heart Circ Physiol 2014, 306(7):H1078-H1086.
  • [74]Marbán E, Cingolani E: Heart to heart: cardiospheres for myocardial regeneration. Heart Rhythm 2012, 9(10):1727-1731.
  • [75]Chang CY, Chan AT, Armstrong PA, Luo HC, Higuchi T, Strehin IA, Vakrou S, Lin X, Brown SN, O'Rourke B, Abraham TP, Wahl RL, Steenbergen CJ, Elisseeff JH, Abraham MR: Hyaluronic acid-human blood hydrogels for stem cell transplantation. Biomaterials 2012, 33(32):8026-8033.
  • [76]Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, Gorman JH 3rd, Gorman RC, Burdick JA: Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci U S A 2010, 107(25):11507-11512.
  • [77]Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E: Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007, 115(7):896-908.
  • [78]Cheng K, Blusztajn A, Shen D, Li TS, Sun B, Galang G, Zarembinski TI, Prestwich GD, Marbán E, Smith RR, Marbán L: Functional performance of human cardiosphere-derived cells delivered in an in situ polymerizable hyaluronan-gelatin hydrogel. Biomaterials 2012, 33(21):5317-5324.
  • [79]Abdalla S, Makhoul G, Duong M, Chiu RC, Cecere R: Hyaluronic acid-based hydrogel induces neovascularization and improves cardiac function in a rat model of myocardial infarction. Interact Cardiovasc Thorac Surg 2013, 17(5):767-772.
  • [80]Karam JP, Muscari C, Montero-Menei CN: Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials 2012, 33(23):5683-5695.
  • [81]Pasquinelli G, Orrico C, Foroni L, Bonafè F, Carboni M, Guarnieri C, Raimondo S, Penna C, Geuna S, Pagliaro P, Freyrie A, Stella A, Caldarera CM, Muscari C: Mesenchymal stem cell interaction with a non-woven hyaluronan-based scaffold suitable for tissue repair. J Anat 2008, 213(5):520-530.
  • [82]Cortivo R, Brun P, Rastrelli A, Abatangelo G: In vitro studies on biocompatibility of hyaluronic acid esters. Biomaterials 1991, 12(8):727-730.
  • [83]Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF: Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 1998, 19(23):2101-2127.
  • [84]Macri L, Silverstein D, Clark RA: Growth factor binding to the pericellular matrix and its importance in tissue engineering. Adv Drug Del Rev 2007, 59(13):1366-1381.
  • [85]Pasquinelli G, Vinci MC, Gamberini C, Orrico C, Foroni L, Guarnieri C, Parenti A, Gargiulo M, Ledda F, Caldarera CM, Muscari C: Architectural organization and functional features of early endothelial progenitor cells cultured in a hyaluronan-based polymer scaffold. Tissue Eng Part A 2009, 15(9):2751-2762.
  • [86]Fiumana E, Pasquinelli G, Foroni L, Carboni M, Bonafé F, Orrico C, Nardo B, Tsivian M, Neri F, Arpesella G, Guarnieri C, Caldarera CM, Muscari C: Localization of mesenchymal stem cells grafted with a hyaluronan-based scaffold in the infarcted heart. J Surg Res 2013, 179(1):e21-e29.
  • [87]Muscari C, Bonafè F, Martin-Suarez S, Valgimigli S, Valente S, Fiumana E, Fiorelli F, Rubini G, Guarnieri C, Caldarera CM, Capitani O, Arpesella G, Pasquinelli G: Restored perfusion and reduced inflammation in the infarcted heart after grafting stem cells with a hyaluronan-based scaffold. J Cell Mol Med 2013, 17(4):518-530.
  • [88]Maureira P, Marie PY, Yu F, Poussier S, Liu Y, Groubatch F, Falanga A, Tran N: Repairing chronic myocardial infarction with autologous mesenchymal stem cells engineered tissue in rat promotes angiogenesis and limits ventricular remodeling. J Biomed Sci 2012, 19:93.
  • [89]Garcia-Fuentes M, Meinel AJ, Hilbe M, Meinel L, Merkle HP: Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Biomaterials 2009, 30(28):5068-7506.
  • [90]Yang MC, Chi NH, Chou NK, Huang YY, Chung TW, Chang YL, Liu HC, Shieh MJ, Wang SS: The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin-hyaluronic acid cardiac patches. Biomaterials 2010, 31(5):854-862.
  • [91]Nassiri SM, Khaki Z, Soleimani M, Ahmadi SH, Jahanzad I, Rabbani S, Sahebjam M, Ardalan FA, Fathollahi MS: The similar effect of transplantation of marrow-derived mesenchymal stem cells with or without prior differentiation induction in experimental myocardial infarction. J Biomed Sci 2007, 14(6):745-755.
  • [92]Xing Y, Lv A, Wang L, Yan X, Zhao W, Cao F: Engineered myocardial tissues constructed in vivo using cardiomyocyte-like cells derived from bone marrow mesenchymal stem cells in rats. J Biomed Sci 2012, 19:6.
  • [93]Chi NH, Yang MC, Chung TW, Chen JY, Chou NK, Wang SS: Cardiac repair achieved by bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid patches in a rat of myocardial infarction model. Biomaterials 2012, 33(22):5541-5551.
  • [94]Yang MC, Wang SS, Chou NK, Chi NH, Huang YY, Chang YL, Shieh MJ, Chung TW: The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro. Biomaterials 2009, 30(22):3757-3765.
  • [95]Muzzarelli RAA: Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydr Polym 2011, 83(4):1433-1445.
  • [96]Chi NH, Yang MC, Chung TW, Chou NK, Wang SS: Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohydr Polym 2013, 92(1):591-597.
  • [97]Engler AJ, Sen S, Sweeney HL, Discher DE: Matrix elasticity directs stem cell lineage specification. Cell 2006, 126(4):677-689.
  • [98]Leong W, Wu S, Pal M, Tay CY, Yu H, Li H, Tan LP: Cyclic tensile loading regulates human mesenchymal stem cell differentiation into neuron-like phenotype. J Tissue Eng Regen Med 2012, 6(Suppl 3):s68-s79.
  • [99]Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, Fredberg JJ: Universal physical responses to stretch in the living cell. Nature 2007, 447(7144):592-595.
  • [100]Clause KC, Tinney JP, Liu LJ, Keller BB, Tobita K: Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation by cyclic mechanical stretch via p38-MAP kinase phosphorylation. Tissue Eng Part A 2009, 15(6):1373-1380.
  • [101]Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE: Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 2011, 109(1):47-59.
  • [102]Boublik J, Park H, Radisic M, Tognana E, Chen F, Pei M, Vunjak-Novakovic G, Freed LE: Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Eng 2005, 11(7¿8):1122-1132.
  • [103]Govoni M, Lotti F, Biagiotti L, Lannocca M, Pasquinelli G, Valente S, Muscari C, Bonafè F, Caldarera CM, Guarnieri C, Cavalcanti S, Giordano E: An innovative stand-alone bioreactor for the highly reproducible transfer of cyclic mechanical stretch to stem cells cultured in a 3D scaffold. J Tissue Eng Regen Med 2014, 8(10):787-793.
  • [104]Govoni M, Muscari C, Guarnieri C, Giordano E: Mechanostimulation protocols for cardiac tissue engineering. Biomed Res Int 2013, 2013:918640.
  • [105]Chopra A, Lin V, McCollough A, Atzet S, Prestwich GD, Wechsler AS, Murray ME, Oake SA, Kresh JY, Janmey PA: Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors. J Biomech 2012, 45(5):824-831.
  • [106]Chopra A, Murray ME, Byfield FJ, Mendez MG, Halleluyan R, Restle DJ, Raz-Ben Aroush D, Galie PA, Pogoda K, Bucki R, Marcinkiewicz C, Prestwich GD, Zarembinski TI, Chen CS, Puré E, Kresh JY, Janmey PA: Augmentation of integrin-mediated mechanotransduction by hyaluronic acid. Biomaterials 2014, 35(1):71-82.
  • [107]Humbert P, Mikosinki J, Benchikhi H, Allaert FA: Efficacy and safety of a gauze pad containing hyaluronic acid in treatment of leg ulcers of venous or mixed origin: a double-blind, randomised, controlled trial. Int Wound J 2013, 10(2):159-166.
  • [108]Motolese A, Vignati F, Brambilla R, Cerati M, Passi A: Interaction between a regenerative matrix and wound bed in nonhealing ulcers: results with 16 cases. Biomed Res Int 2013, 2013:849321.
  • [109]Felzani G, Spoletini I, Convento A, Di Lorenzo B, Rossi P, Miceli M, Rosano G: Effect of lysine hyaluronate on the healing of decubitus ulcers in rehabilitation patients. Adv Ther 2011, 8(5):439-445.
  • [110]Catalfamo L, Belli E, Nava C, Mici E, Calvo A, D'Alessandro B, De Ponte FS: Bioengineering in the oral cavity: our experience. Int J Nanomedicine 2013, 8:3883-3886.
  • [111]Scuderi N, Anniboletti T, Carlesimo B, Onesti MG: Clinical application of autologous three-cellular cultured skin substitutes based on esterified hyaluronic acid scaffold: our experience. In Vivo 2009, 23(6):991-1003.
  • [112]Giannini S, Buda R, Battaglia M, Cavallo M, Ruffilli A, Ramponi L, Pagliazzi G, Vannini F: One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction. Am J Sports Med 2013, 41(3):511-518.
  • [113]Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, Kon E, Pederzini L, Rosa D, Sacchetti GL, Stefani G, Zanasi S: Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res 2005, 435:96-105.
  • [114]Skogh AC, Kihlström L, Neovius E, Persson C, Beckman MO, Engstrand T: Variation in calvarial bone healing capacity: a clinical study on the effects of BMP-2-hydrogel or bone autograft treatments at different cranial locations. J Craniofac Surg 2013, 24(2):339-343.
  文献评价指标  
  下载次数:37次 浏览次数:15次