期刊论文详细信息
Journal of Cardiovascular Magnetic Resonance
Combined measurement of perfusion, venous oxygen saturation, and skeletal muscle T2* during reactive hyperemia in the leg
Felix W Wehrli2  Emile R Mohler1  Thomas F Floyd3  Zachary B Rodgers2  Cheng Li2  Michael C Langham2  Erin K Englund2 
[1] Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA;Department of Radiology, Laboratory of Structural NMR Imaging, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA 19104, USA;Department of Anesthesiology, Stony Brook University Medical Center, Stony Brook, NY 11794, USA
关键词: Skeletal muscle;    Reactive hyperemia;    BOLD;    T2*;    Dynamic oximetry;    Perfusion;    Microvascular function;    Atherosclerosis;    Peripheral artery disease;   
Others  :  812205
DOI  :  10.1186/1532-429X-15-70
 received in 2013-04-20, accepted in 2013-07-30,  发布年份 2013
PDF
【 摘 要 】

Background

The function of the peripheral microvascular may be interrogated by measuring perfusion, tissue oxygen concentration, or venous oxygen saturation (SvO2) recovery dynamics following induced ischemia. The purpose of this work is to develop and evaluate a magnetic resonance (MR) technique for simultaneous measurement of perfusion, SvO2, and skeletal muscle T2*.

Methods

Perfusion, Intravascular Venous Oxygen saturation, and T2* (PIVOT) is comprised of interleaved pulsed arterial spin labeling (PASL) and multi-echo gradient-recalled echo (GRE) sequences. During the PASL post-labeling delay, images are acquired with a multi-echo GRE to quantify SvO2 and T2* at a downstream slice location. Thus time-courses of perfusion, SvO2, and T2* are quantified simultaneously within a single scan. The new sequence was compared to separately measured PASL or multi-echo GRE data during reactive hyperemia in five young healthy subjects. To explore the impairment present in peripheral artery disease patients, five patients were evaluated with PIVOT.

Results

Comparison of PIVOT-derived data to the standard techniques shows that there was no significant bias in any of the time-course-derived metrics. Preliminary data show that PAD patients exhibited alterations in perfusion, SvO2, and T2* time-courses compared to young healthy subjects.

Conclusion

Simultaneous quantification of perfusion, SvO2, and T2* is possible with PIVOT. Kinetics of perfusion, SvO2, and T2* during reactive hyperemia may help to provide insight into the function of the peripheral microvasculature in patients with PAD.

【 授权许可】

   
2013 Englund et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709081128593.pdf 1869KB PDF download
Figure 5. 171KB Image download
Figure 4. 172KB Image download
Figure 3. 127KB Image download
Figure 2. 135KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Criqui MH, Fronek A, Barrett-Connor E, Klauber MR, Gabriel S, Goodman D. The prevalence of peripheral arterial disease in a defined population. Circulation. 1985; 71:510-5.
  • [2]Meijer WT, Hoes AW, Rutgers D, Bots ML, Hofman A, Grobbee DE. Peripheral arterial disease in the elderly: the Rotterdam study. Arterioscler Thromb Vasc Biol. 1998; 18:185-92.
  • [3]Hirsch AT HCM, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, Krook SH, Hunninghake DB, Comerota AJ, Walsh ME. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA: J Am Med Assoc. 2001; 286:1317-24.
  • [4]Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, Hiratzka LF, Murphy WRC, Olin JW, Puschett JB, Rosenfield KA, Sacks D, Stanley JC, Taylor LM, White CJ, White J, White RA, Antman EM, Smith SC, Adams CD, Anderson JL, Faxon DP, Fuster V, Gibbons RJ, Hunt SA, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B et al.. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2005; 2006:e463-654.
  • [5]Faxon DP, Fuster V, Libby P, Beckman JA, Hiatt WR, Thompson RW, Topper JN, Annex BH, Rundback JH, Fabunmi RP, Robertson RM, Loscalzo J, American Heart Association. Atherosclerotic vascular disease conference: writing group III: pathophysiology. Circulation. 2004; 109:2617-25.
  • [6]Bragadeesh T, Sari I, Pascotto M, Micari A, Kaul S, Lindner JR. Detection of peripheral vascular stenosis by assessing skeletal muscle flow reserve. J Am Coll Cardiol. 2005; 45:780-5.
  • [7]Ledermann HP, Heidecker H-G, Schulte A-C, Thalhammer C, Aschwanden M, Jaeger KA, Scheffler K, Bilecen D. Calf muscles imaged at BOLD MR: correlation with TcPO2 and flowmetry measurements during ischemia and reactive hyperemia–initial experience. Radiology. 2006; 241:477-84.
  • [8]Toussaint J-F, Kwong KK, M'Kparu F, Weisskoff RM, LaRaia PJ, Kantor HL. Perfusion changes in human skeletal muscle during reactive hyperemia measured by echo-planar imaging. Magn Reson Med. 1996; 35:62-9.
  • [9]Damon BM, Hornberger JL, Wadington MC, Lansdown DA, Kent-Braun JA. Dual gradient-echo MRI of post-contraction changes in skeletal muscle blood volume and oxygenation. Magn Reson Med. 2007; 57:670-9.
  • [10]Langham MC, Floyd TF, Mohler ER, Magland JF, Wehrli FW. Evaluation of cuff-induced ischemia in the lower extremity by magnetic resonance oximetry. J Am Coll Cardiol. 2010; 55:598-606.
  • [11]Detre J, Leigh J, Williams D. Detre, MRM 1992 Perfusion imaging. Magn Reson Med. 1992; 23:1-9.
  • [12]Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci. 1992; 89:212-6.
  • [13]Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med. 1995; 34:293-301.
  • [14]Kim SG, Tsekos NV. Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique: application to functional brain imaging. Magn Reson Med. 1997; 37:425-35.
  • [15]Wu W-C, Wang J, Detre JA, Wehrli FW, Mohler E, Ratcliffe SJ, Floyd TF. Hyperemic flow heterogeneity within the calf, foot, and forearm measured with continuous arterial spin labeling MRI. Am J Physiol Heart Circ Physiol. 2008; 294:H2129-36.
  • [16]Raynaud JS, Duteil S, Vaughan JT, Hennel F, Wary C, Leroy-Willig A, Carlier PG. Determination of skeletal muscle perfusion using arterial spin labeling NMRI: validation by comparison with venous occlusion plethysmography. Magn Reson Med. 2001; 46:305-11.
  • [17]Wu W-C, Mohler E, Ratcliffe SJ, Wehrli FW, Detre JA, Floyd TF. Skeletal muscle microvascular flow in progressive peripheral artery disease: assessment with continuous arterial spin-labeling perfusion magnetic resonance imaging. J Am Coll Cardiol. 2009; 53:2372-7.
  • [18]Ogawa S, Lee T, Kay A. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci. 1990; 87:9868-72.
  • [19]Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Uğurbil K. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993; 64:803-12.
  • [20]Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation. 1996; 94:3271-5.
  • [21]Noseworthy M, Bulte DP, Alfonsi J. BOLD magnetic resonance imaging in skeletal muscle. Semin Musculoskelet Radiol. 2003; 7:307-15.
  • [22]Damon BM, Gore JC. Physiological basis of muscle functional MRI: predictions using a computer model. J Appl Physiol. 2004; 98:264-73.
  • [23]Lebon V, Brillault-Salvat C, Bloch G, Leroy-Willig A, Carlier PG. Evidence of muscle BOLD effect revealed by simultaneous interleaved gradient-echo NMRI and myoglobin NMRS during leg ischemia. Magn Reson Med. 1998; 40:551-8.
  • [24]Fernández-Seara MA, Techawiboonwong A, Detre JA, Wehrli FW. MR susceptometry for measuring global brain oxygen extraction. Magn Reson Med. 2006; 55:967-73.
  • [25]Langham MC, Englund EK, Mohler ER, Li C, Rodgers ZB, Floyd TF, Wehrli FW. Quantitative CMR markers of impaired vascular reactivity associated with age and peripheral artery disease. J Cardiov Magn Reson. 2013; 15:17. BioMed Central Full Text
  • [26]Ledermann HP, Schulte A-C, Heidecker H-G, Aschwanden M, Jäger KA, Scheffler K, Steinbrich W, Bilecen D. Blood oxygenation level-dependent magnetic resonance imaging of the skeletal muscle in patients with peripheral arterial occlusive disease. Circulation. 2006; 113:2929-35.
  • [27]Lebon V, Carlier PG, Brillault-Salvat C, Leroy-Willig A. Simultaneous measurement of perfusion and oxygenation changes using a multiple gradient-echo sequence: application to human muscle study. Magn Reson Imaging. 1998; 16:721-9.
  • [28]Duteil S, Wary C, Raynaud JS, Lebon V, Lesage D, Leroy-Willig A, Carlier PG. Influence of vascular filling and perfusion on BOLD contrast during reactive hyperemia in human skeletal muscle. Magn Reson Med. 2006; 55:450-4.
  • [29]Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed. 1997; 10:237-49.
  • [30]Lu H, Clingman C, Golay X, van Zijl PCM. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med. 2004; 52:679-82.
  • [31]Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. Am J Roentgenol. 2004; 183:343-51.
  • [32]Carlier PG, Bertoldi D, Baligand C, Wary C, Fromes Y. Muscle blood flow and oxygenation measured by NMR imaging and spectroscopy. NMR Biomed. 2006; 19:954-67.
  • [33]Haacke EM, Lai S, Reichenbach JR, Kuppusamy K, Hoogenraad FG, Takeichi H, Lin W. In vivo measurement of blood oxygen saturation using magnetic resonance imaging: a direct validation of the blood oxygen level-dependent concept in functional brain imaging. Hum Brain Mapp. 1997; 5:341-6.
  • [34]Langham MC, Magland JF, Epstein CL, Floyd TF, Wehrli FW. Accuracy and precision of MR blood oximetry based on the long paramagnetic cylinder approximation of large vessels. Magn Reson Med. 2009; 62:333-40.
  • [35]Spees WM, Yablonskiy DA, Oswood MC, Ackerman JJ. Water proton MR properties of human blood at 1.5 Tesla: magnetic susceptibility, T(1), T(2), T*(2), and non-Lorentzian signal behavior. Magn Reson Med. 2001; 45:533-42.
  • [36]Jain V, Abdulmalik O, Propert KJ, Wehrli FW. Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification. Magn Reson Med. 2011; 68:863-7.
  • [37]Li C, Langham MC, Epstein CL, Magland JF, Wu J, Gee J, Wehrli FW. Accuracy of the cylinder approximation for susceptometric measurement of intravascular oxygen saturation. Magn Reson Med. 2011; 67:808-13.
  • [38]Donahue KM, Van Kylen J, Guven S, El Bershawi A, Luh WM, Bandettini PA, Cox RW, Hyde JS, Kissebah AH. Simultaneous gradient‒echo/spin‒echo EPI of graded ischemia in human skeletal muscle. J Magn Reson Imaging. 1998; 8:1106-13.
  • [39]Sanchez OA, Copenhaver EA, Elder CP, Damon BM. Absence of a significant extravascular contribution to the skeletal muscle BOLD effect at 3 T. Magn Reson Med. 2010; 64:527-35.
  • [40]Partovi S, Karimi S, Jacobi B, Schulte A-C, Aschwanden M, Zipp L, Lyo JK, Karmonik C, Müller-Eschner M, Huegli RW, Bongartz G, Bilecen D. Clinical implications of skeletal muscle blood-oxygenation-level-dependent (BOLD) MRI. Mag Reson Mater Phy. 2012; 25:251-61.
  • [41]Slade JM, Towse TF, Gossain VV, Meyer RA. Peripheral microvascular response to muscle contraction is unaltered by early diabetes but decreases with age. J Appl Physiol. 2011; 111:1361-71.
  • [42]Towse TF, Slade JM, Ambrose JA, DeLano MC, Meyer RA. Quantitative analysis of the postcontractile blood-oxygenation-level-dependent (BOLD) effect in skeletal muscle. J Appl Physiol. 2011; 111:27-39.
  • [43]Elder CP, Cook RN, Wilkens KL, Chance MA, Sanchez OA, Damon BM. A method for detecting the temporal sequence of muscle activation during cycling using MRI. J Appl Physiol. 2011; 110:826-33.
  • [44]Potthast S, Schulte A, Kos S, Aschwanden M, Bilecen D. Blood oxygenation level-dependent MRI of the skeletal muscle during ischemia in patients with peripheral arterial occlusive disease. Rofo. 2009; 181:1157-61.
  • [45]Van Vaals JJ, Brummer ME, Thomas Dixon W, Tuithof HH, Engels H, Nelson RC, Gerety BM, Chezmar JL, Den Boer JA. “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging. 2005; 3:671-5.
  • [46]Magland J, Wehrli F. Pulse sequence programming in a dynamic visual environment. Proc Int Soc Magnet Reson Med. 2006.3032.
  • [47]Wu W-C, Wang J, Detre JA, Ratcliffe SJ, Floyd TF. Transit delay and flow quantification in muscle with continuous arterial spin labeling perfusion-MRI. J Magn Reson Imaging. 2008; 28:445-52.
  • [48]Langham MC, Magland JF, Floyd TF, Wehrli FW. Retrospective correction for induced magnetic field inhomogeneity in measurements of large-vessel hemoglobin oxygen saturation by MR susceptometry. Magn Reson Med. 2009; 61:626-33.
  • [49]Versluis B, Backes WH, van Eupen MGA, Jaspers K, Nelemans PJ, Rouwet EV, Teijink JAW, Mali WPTM, Schurink G-W, Wildberger JE, Leiner T. Magnetic resonance imaging in peripheral arterial disease: reproducibility of the assessment of morphological and functional vascular status. Invest Radiol. 2011; 46:11-24.
  • [50]Etsuda H, Takase B, Uehata A, Kusano H, Hamabe A, Kuhara R, Akima T, Matsushima Y, Arakawa K, Satomura K, Kurita A, Ohsuzu F. Morning attenuation of endothelium-dependent, flow-mediated dilation in healthy young men: possible connection to morning peak of cardiac events? Clin Cardiol. 1999; 22:417-21.
  • [51]Nadel ER, Fortney SM, Wenger CB. Effect of hydration state of circulatory and thermal regulations. J Appl Physiol. 1980; 49:715-21.
  • [52]Bungum L, Kvernebo K, Oian P, Maltau JM. Laser doppler-recorded reactive hyperaemia in the forearm skin during the menstrual cycle. Brit J Obstet Gynaec. 1996; 103:70-5.
  • [53]Parkes LM, Rashid W, Chard DT, Tofts PS. Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med. 2004; 51:736-43.
  • [54]Proctor DN, Le KU, Ridout SJ. Age and regional specificity of peak limb vascular conductance in men. J Appl Physiol. 2005; 98:193-202.
  • [55]Langham MC, Englund EK, Li C, Floyd TF, Mohler ER, Wehrli FW. Balanced tissue magnetization reduces confounding BOLD effect in post-ischemic muscle perfusion quantification. Proc Int Soc Magnet Reson Med. 2012.2027.
  • [56]Langham MC, Wehrli FW. mproved temporal resolution of dynamic oximetry via keyhole acquisition for quantifying reactive hyperemia. Proc Int Soc Magnet Reson Med. 2012.1147.
  • [57]Brillault-Salvat C, Giacomini E, Jouvensal L, Wary C, Bloch G, Carlier PG. Simultaneous determination of muscle perfusion and oxygenation by interleaved NMR plethysmography and deoxymyoglobin spectroscopy. NMR Biomed. 1997; 10:315-23.
  • [58]Partovi S, Schulte A-C, Jacobi B, Klarhöfer M, Lumsden AB, Loebe M, Davies MG, Noon GP, Karmonik C, Zipp L, Bongartz G, Bilecen D. Blood oxygenation level-dependent (BOLD) MRI of human skeletal muscle at 1.5 and 3 T. J Magn Reson Imaging. 2012; 35:1227-32.
  • [59]Schulte AC, Aschwanden M, Bilecen D. Calf muscles at blood oxygen level-dependent MR imaging: aging effects at postocclusive reactive hyperemia. Radiology. 2008; 247:482-9.
  • [60]Mohler ER, Beebe HG, Salles-Cuhna S, Zimet R, Zhang P, Heckman J, Forbes WP. Effects of cilostazol on resting ankle pressures and exercise-induced ischemia in patients with intermittent claudication. Vasc Med. 2001; 6:151-6.
  • [61]Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER, Cohen DJ, Reynolds MR, Massaro JM, Lewis BA, Cerezo J, Oldenburg NC, Thum CC, Goldberg S, Jaff MR, Steffes MW, Comerota AJ, Ehrman J, Treat-Jacobson D, Walsh ME, Collins T, Badenhop DT, Bronas U, Hirsch AT, for the CLEVER Study Investigators. Supervised exercise versus primary stenting for claudication resulting from aortoiliac peripheral artery disease: six-month outcomes from the claudication: exercise versus endoluminal revascularization (CLEVER) study. Circulation. 2012; 125:130-9.
  文献评价指标  
  下载次数:33次 浏览次数:18次