期刊论文详细信息
Journal of Orthopaedic Surgery and Research
Strontium enhances osseointegration of calcium phosphate cement: a histomorphometric pilot study in ovariectomized rats
Christian Kasperk3  Peter P Nawroth3  Peter Jürgen Meeder1  Ingo Grafe3  Robert Wenz2  Ulrike Sommer3  Roman Klein3  Patric Staudt3  Martin Baier1 
[1] Division of Traumatology, University of Heidelberg, Schlierbacher Landstraße 200a, Heidelberg 69118, Germany;Medtronic GmbH, Earl-Bakken-Platz 1, Meerbusch 40670, Germany;Division of Osteology, Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
关键词: Osteoporosis;    Bone healing;    Osteogenesis;    Calcium phosphate cement;    Strontium;   
Others  :  817723
DOI  :  10.1186/1749-799X-8-16
 received in 2013-02-03, accepted in 2013-05-21,  发布年份 2013
PDF
【 摘 要 】

Background

Calcium phosphate cements are used frequently in orthopedic and dental surgeries. Strontium-containing drugs serve as systemic osteoblast-activating medication in various clinical settings promoting mechanical stability of the osteoporotic bone.

Methods

Strontium-containing calcium phosphate cement (SPC) and calcium phosphate cement (CPC) were compared regarding their local and systemic effects on bone tissue in a standard animal model for osteoporotic bone. A bone defect was created in the distal femoral metaphysis of 60 ovariectomized Sprague-Dawley rats. CPC and SPC were used to fill the defects in 30 rats in each group. Local effects were assessed by histomorphometry at the implant site. Systemic effects were assessed by bone mineral density (BMD) measurements at the contralateral femur and the spine.

Results

Faster osseointegration and more new bone formation were found for SPC as compared to CPC implant sites. SPC implants exhibited more cracks than CPC implants, allowing more bone formation within the implant. Contralateral femur BMD and spine BMD did not differ significantly between the groups.

Conclusions

The addition of strontium to calcium phosphate stimulates bone formation in and around the implant. Systemic release of strontium from the SPC implants did not lead to sufficiently high serum strontium levels to induce significant systemic effects on bone mass in this rat model.

【 授权许可】

   
2013 Baier et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140711020129856.pdf 1840KB PDF download
Figure 7. 60KB Image download
Figure 6. 48KB Image download
Figure 5. 52KB Image download
Figure 4. 165KB Image download
Figure 3. 179KB Image download
Figure 2. 171KB Image download
Figure 1. 174KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Albee FH: Studies in bone growth: triple calcium phosphate as a stimulus to osteogenesis. Ann Surg 1920, 71:32-39.
  • [2]Ray RD, Ward AA Jr: A preliminary report on studies of basic calcium phosphate in bone replacement. Surg Forum 1951, 1951:429-434.
  • [3]Brown WE, Chow OLC: Dental restorative cement pastes. 1995. US Patent no. 4518430
  • [4]Illi OE, Feldmann CP: Stimulation of fracture healing by local application of humoral factors integrated in biodegradable implants. Eur J Pediatr Surg 1998, 8:251-255.
  • [5]Friess W, Uludag H, Foskett S, Biron R, Sargeant C: Characterization of absorbable collagen sponges as rhBMP-2 carriers. Int J Pharm 1999, 187:91-99.
  • [6]Woo BH, Fink BF, Page R, Schrier JA, Jo YW, Jiang G, DeLuca M, Vasconez HC, DeLuca PP: Enhancement of bone growth by sustained delivery of recombinant human bone morphogenetic protein-2 in a polymeric matrix. Pharm Res 2001, 18:1747-1753.
  • [7]Yokota S, Uchida T, Kokubo S, Aoyama K, Fukushima S, Nozaki K, Takahashi T, Fujimoto R, Sonohara R, Yoshida M, Higuchi S, Yokohama S, Sonobe T: Release of recombinant human bone morphogenetic protein 2 from a newly developed carrier. Int J Pharm 2003, 251:57-66.
  • [8]Cook SD, Dalton JE, Tan EH, Whitecloud TS, Rueger DC: In vivo evaluation of recombinant human osteogenic protein (rhOP-1) implants as a bone graft substitute for spinal fusions. Spine (Phila Pa 1976) 1994, 1655:1663-1655.
  • [9]Min SX, Jin AM, Tong BH, Zhu LX, Tian J: Three-dimensional porous poly-DL-lactide/basic fibroblast growth factor composites for bone defect repair: an experimental study. Di Yi Jun Yi Da Xue Xue Bao 2003, 23:318-322.
  • [10]Arm DM, Tencer AF, Bain SD, Celino D: Effect of controlled release of platelet-derived growth factor from a porous hydroxyapatite implant on bone ingrowth. Biomaterials 1996, 17:703-709.
  • [11]Laffargue P, Fialdes P, Frayssinet P, Rtaimate M, Hildebrand HF, Marchandise X: Adsorption and release of insulin-like growth factor-I on porous tricalcium phosphate implant. J Biomed Mater Res 2000, 49:415-421.
  • [12]Marie PJ, Garba MT, Hott M, Miravet L: Effect of low doses of stable strontium on bone metabolism in rats. Miner Electrolyte Metab 1985, 11:5-13.
  • [13]Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ: The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 1996, 18:517-523.
  • [14]Verberckmoes SC, De Broe ME, D'Haese PC: Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int 2003, 64:534-543.
  • [15]Marie PJ, Hott M, Modrowski D, De Pollak C, Guillemain J, Deloffre P, Tsouderos Y: An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 1993, 8:607-615.
  • [16]Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A: Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone 2001, 29:176-179.
  • [17]Marie PJ, Ammann P, Boivin G, Rey C: Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 2001, 69:121-129.
  • [18]Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ: Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metabol 2005, 90:2816-2822.
  • [19]Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY: The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 2004, 350:459-468.
  • [20]Turner RT, Maran A, Lotinun S, Hefferan T, Evans GL, Zhang M, Sibonga JD: Animal models for osteoporosis. Rev Endocr Metab Disord 2001, 2:117-127.
  • [21]Jee WS, Yao W: Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact 2001, 1:193-207.
  • [22]Peng S, Liu XS, Wang T, Li Z, Zhou G, Luk KD, Guo XE, Lu WW: In vivo anabolic effect of strontium on trabecular bone was associated with increased osteoblastogenesis of bone marrow stromal cells. J Orthop Res 2010, 28:1208-1214.
  • [23]Panzavolta S, Torricelli P, Sturba L, Bracci B, Giardino R, Bigi A: Setting properties and in vitro bioactivity of strontium-enriched gelatin-calcium phosphate bone cements. J Biomed Mater Res 2008, 84:965-972.
  • [24]Okayama S, Akao M, Nakamura S, Shin Y, Higashikata M, Aoki H: The mechanical properties and solubility of strontium-substituted hydroxyapatite. Bio-Med Mater Eng 1991, 1:11-17.
  • [25]Christoffersen J, Christoffersen MR, Kolthoff N, Barenholdt O: Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone 1997, 20:47-54.
  • [26]Verberckmoes SC, Behets GJ, Oste L, Bervoets AR, Lamberts LV, Drakopoulos M, Somogyi A, Cool P, Dorrine W, De Broe ME, D'Haese PC: Effects of strontium on the physicochemical characteristics of hydroxyapatite. Calcif Tissue Int 2004, 75:405-415.
  • [27]Ni GX, Lu WW, Xu B, Chiu KY, Yang C, Li ZY, Lam WM, Luk KD: Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone. Biomaterials 2006, 27:5127-5133.
  • [28]Wong CT, Lu WW, Chan WK, Cheung KM, Luk KD, Lu DS, Rabie AB, Deng LF, Leong JC: In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (Sr-HA) bioactive cement. J Biomed Mater Res 2004, 68:513-521.
  • [29]Lu WW, Cheung KM, Li YW, Luk KD, Holmes AD, Zhu QA, Leong JC: Bioactive bone cement as a principal fixture for spinal burst fracture: an in vitro biomechanical and morphologic study. Spine 2001, 26:2684-2690. discussion 2690–2681
  • [30]Cheung KM, Lu WW, Luk KD, Wong CT, Chan D, Shen JX, Qiu GX, Zheng ZM, Li CH, Liu SL, Chan WK, Leong JC: Vertebroplasty by use of a strontium-containing bioactive bone cement. Spine 2005, 30:S84-S91.
  • [31]Guo D, Xu K, Zhao X, Han Y: Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 2005, 26:4073-4083.
  • [32]Dagang G, Kewei X, Yong H: The influence of Sr doses on the in vitro biocompatibility and in vivo degradability of single-phase Sr-incorporated HAP cement. J Biomed Mater Res 2008, 86:947-958.
  • [33]Wang X, Ye J, Wang Y: Influence of a novel radiopacifier on the properties of an injectable calcium phosphate cement. Acta Biomater 2007, 3:757-763.
  • [34]Wronski TJ, Lowry PL, Walsh CC, Ignaszewski LA: Skeletal alterations in ovariectomized rats. Calcif Tissue Int 1985, 37:324-328.
  • [35]Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y, Allain P, Tsouderos Y, Meunier PJ: Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res 1996, 11:1302-1311.
  • [36]Roschger P, Manjubala I, Zoeger N, Meirer F, Simon R, Li C, Fratzl-Zelman N, Misof BM, Paschalis EP, Streli C, Fratzl P, Klaushofer K: Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J Bone Miner Res 2010, 25:891-900.
  • [37]Blake GM, Fogelman I: Long-term effect of strontium ranelate treatment on BMD. J Bone Miner Res 2005, 20:1901-1904.
  • [38]Blake GM, Fogelman I: Theoretical model for the interpretation of BMD scans in patients stopping strontium ranelate treatment. J Bone Miner Res 2006, 21:1417-1424.
  • [39]Hott M, Deloffre P, Tsouderos Y, Marie PJ: S12911-2 reduces bone loss induced by short-term immobilization in rats. Bone 2003, 33:115-123.
  • [40]Marie PJ, Ammann P, Shen V, Bain SD, Robin B, Dupin-Roger I: Evidence that strontium ranelate increases bone quality in rats by improving bone strength and architecture. Bone 2003, 32(5):S80. OR29W
  • [41]Fuchs RK, Allen MR, Condon KW, Reinwald S, Miller LM, McClenathan D, Keck B, Phipps RJ, Burr DB: Strontium ranelate does not stimulate bone formation in ovariectomized rats. Osteoporos Int 2008, 19:1331-1341.
  文献评价指标  
  下载次数:62次 浏览次数:22次