期刊论文详细信息
European Journal of Medical Research
The progress of early phase bone healing using porous granules produced from calcium phosphate cement
M Wild2  J Windolf2  J Becker1  AR Hakimi1  M Sager3  A Kessner2  J Schneppendahl2  JP Grassmann2  M Hakimi2  P Jungbluth2 
[1] Heinrich Heine University Hospital Duesseldorf, Department of Oral Surgery, Duesseldorf, Germany;Heinrich Heine University Hospital Duesseldorf, Department of Trauma and Handsurgery, Duesseldorf, Germany;Heinrich Heine University Hospital Duesseldorf, Animal Research Institute, Duesseldorf, Germany
关键词: Mini-pig;    Animal model;    Bone defect;    Bone healing;    Calcium phosphate cement;    Calcium phosphate granules;   
Others  :  1093170
DOI  :  10.1186/2047-783X-15-5-196
 received in 2010-02-24, accepted in 2010-03-11,  发布年份 2010
PDF
【 摘 要 】

Objective

Bone grafting is a vital component in many surgical procedures to facilitate the repair of bone defects or fusions. Autologous bone has been the gold standard to date in spite of associated donor-site morbidity and the limited amount of available donor bone. The aim of this study was to investigate the progress of bone regeneration and material degradation of calcium phosphate granules (CPG) produced from a calcium phosphate self-setting cement powder compared to the use of autologous bone grafting in the treatment of "critical size defects" on load-bearing long bones of minipigs.

Methods

A critical size defect in the tibial metaphysis of 16 mini-pigs was filled either with autologous cancellous graft or with micro- and macroporous carbonated, apatic calcium phosphate granules (CPG) produced from a calcium phosphate self-setting cement powder. After 6 weeks, the specimens were assessed by X-ray and histological evaluation. The amount of new bone formation was analysed histomorphometrically.

Results

The semi-quantitative analysis of the radiological results showed a complete osseous bridging of the defect in three cases for the autograft group. In the same group five animals showed a beginning, but still incomplete bridging of the defect, whereas in the CPG group just two animals developed this. All other animals of the CPG group showed only a still discontinuous new bone formation. Altogether, radiologically a better osseous bridging was observed in the autograft group compared to the CPG group.

Histomorphometrical analysis after six weeks of healing revealed that the area of new bone was significantly greater in the autograft group concerning the central area of the defect zone (p < 0.001) as well as the cortical defect zone (p < 0.002). All defects showed new bone formation, but only in the autograft group defects regenerated entirely

Conclusions

Within the limits of the present study it could be demonstrated that autologous cancellous grafts lead to a significantly better bone regeneration compared to the application of calcium phosphate granules (CPG) produced from a calcium phosphate self-setting cement powder after 6 weeks. In the early phase of bone-healing, the sole application of CPG appears to be inferior to the autologous cancellous grafts in an in vivo critical size defect on load-bearing long bones of mini-pigs.

【 授权许可】

   
2010 I. Holzapfel Publishers

【 预 览 】
附件列表
Files Size Format View
20150130160945870.pdf 1326KB PDF download
Figure 6. 83KB Image download
Figure 5. 139KB Image download
Figure 4. 314KB Image download
Figure 3. 23KB Image download
Figure 2. 269KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Walsh WR, Vizesi F, Michael D, Auld J, Langdown A, Oliver R, Yu Y, Irie H, Bruce W: Beta-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials 2008, 29:266-271.
  • [2]Perry CR: Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res 1999, 71-86.
  • [3]Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P: Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 2008, 29:1177-1188.
  • [4]Cedidi CC, Felmerer G, Berger A: Management of defects in the groin, thigh, and pelvic region with modified contralateral TRAM/VRAM flaps. Eur J Med Res 2005, 10:515-520.
  • [5]Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA: Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 1996, 300-309.
  • [6]Kasten P, Vogel J, Geiger F, Niemeyer P, Luginbuhl R, Szalay K: The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials 2008, 29:3983-3992.
  • [7]Cornell CN: Osteoconductive materials and their role as substitutes for autogenous bone grafts. Orthop Clin North Am 1999, 30:591-598.
  • [8]Petite H, Viateau V, Bensaid W, Meunier A, De Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G: Tissue-engineered bone regeneration. Nat Biotechnol 2000, 18:959-963.
  • [9]Okafuji N, Shimizu T, Watanabe T, Kimura A, Kurihara S, Arai Y, Furusawa K, Hasegawa H, Kawakami T: Three-dimensional observation of reconstruction course of rabbit experimental mandibular defect with rhBMP-2 and atelocollagen gel. Eur J Med Res 2006, 11:351-354.
  • [10]Legeros RZ: Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 2002, 81-98.
  • [11]Schieker M, Heiss C, Mutschler W: [Bone substitutes]. Unfallchirurg 2008, 111:613-619; quiz 620.
  • [12]Tas AC: Preparation of porous apatite granules from calcium phosphate cement. J Mater Sci Mater Med 2008, 19:2231-2239.
  • [13]Burger EL, Patel V: Calcium phosphates as bone graft extenders. Orthopedics 2007, 30:939-942.
  • [14]Bohner M, Gbureck U, Barralet JE: Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials 2005, 26:6423-6429.
  • [15]Bohner M: Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 2000, 31:Suppl 4:37-47.
  • [16]Bohner M, Van Lenthe GH, Grunenfelder S, Hirsiger W, Evison RandMuller R: Synthesis and characterization of porous beta-tricalcium phosphate blocks. Biomaterials 2005, 26:6099-6105.
  • [17]Chow LC: Next generation calcium phosphate-based biomaterials. Dent Mater J 2009, 28:1-10.
  • [18]Hillmeier J, Grafe I, Da Fonseca K, Meeder PJ, Noldge G, Libicher M, Kock HJ, Haag M, Kasperk C: [The evaluation of balloonkyphoplasty for osteoporotic vertebral fractures. An interdisciplinary concept]. Orthopade 2004, 33:893-904.
  • [19]Kasten P, Luginbuhl R, Vogel J, Niemeyer P, Weiss S, Van Griensven M, Krettek C, Bohner M, Bosch U, Tonak M: [Induction of bone tissue on different matrices: an in vitro and a in vivo pilot study in the SCID mouse]. Z Orthop Ihre Grenzgeb 2004, 142:467-475.
  • [20]Steffen T, Stoll T, Arvinte T, Schenk RK: Porous tricalcium phosphate and transforming growth factor used for anterior spine surgery. Eur Spine J 2001, 10:Suppl 2:S132-S140.
  • [21]Wheeler DI, Cross AR, Eschbach EJ, Rose AT, Gallogly PM, Lewis DD, Vander Griend RA: Grafting of massive tibial subchondral bone defects in a caprine model using beta-tricalcium phosphate versus autograft. J Orthop Trauma 2005, 19:85-91.
  • [22]Sarkar MR, Augat P, Shefelbine SJ, Schorlemmer S, Huber-Lang M, Claes L, Kinzl L, Ignatius A: Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold. Biomaterials 2006, 27:1817-1823.
  • [23]Donath K: The diagnostic value of the new method for the study of undecalcified bones and teeth with attached soft tissue (Sage-Schliff (sawing and grinding) technique). Pathol Res Pract 1985, 179:631-633.
  • [24]Schwarz F, Herten M, Ferrari D, Wieland M, Schmitz L, Engelhardt E, Becker J: Guided bone regeneration at dehiscence-type defects using biphasic hydroxyapatite + beta tricalcium phosphate (Bone Ceramic) or a collagen-coated natural bone mineral (BioOss Collagen): an immunohistochemical study in dogs. Int J Oral Maxillofac Surg 2007, 36:1198-1206.
  • [25]Lange TA, Zerwekh JE, Peek RD, Mooney V, Harrison BH: Granular tricalcium phosphate in large cancellous defects. Ann Clin Lab Sci 1986, 16:467-472.
  • [26]Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D: Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater 2009, 90:171-181.
  • [27]Wiltfang J, Merten HA, Schlegel KA, Schultze-Mosgau S, Kloss FR, Rupprecht S, Kessler P: Degradation characteristics of alpha and beta tri-calcium-phosphate (TCP) in minipigs. J Biomed Mater Res 2002, 63:115-121.
  • [28]Schlegel KA, Kloss FR, Schultze-Mosgau S, Neukam FW, Wiltfang J: [Osseous defect regeneration using autogenous bone alone or combined with Biogran or Algipore with and without added thrombocytes. A microradiologic evaluation]. Mund Kiefer Gesichtschir 2003, 7:112-118.
  • [29]Ooms EM, Wolke JG, Van De Heuvel MT, Jeschke Band-Jansen JA: Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterials 2003, 24:989-1000.
  • [30]Bohner M, Baumgart F: Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 2004, 25:3569-3582.
  • [31]Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B: Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 1999, 10:111-120.
  • [32]Habibovic P, Yuan H, Van Der Valk CM, Meijer G, Van Blitterswijk CA, De Groot K: 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 2005, 26:3565-3575.
  • [33]Hing KA, Annaz B, Saeed S, Revell PA, Buckland T: Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med 2005, 16:467-475.
  • [34]Reinstorf A, Ruhnow M, Gelinsky M, Pompe W, Hempel U, Wenzel KW, Simon P: Phosphoserine--a convenient compound for modification of calcium phosphate bone cement collagen composites. J Mater Sci Mater Med 2004, 15:451-455.
  • [35]Kasten P, Luginbuhl R, Van Griensven M, Barkhausen T, Krettek C, Bohner M, Bosch U: Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, beta-tricalcium phosphate and demineralized bone matrix. Biomaterials 2003, 24:2593-2603.
  • [36]Hempel U, Reinstorf A, Poppe M, Fischer U, Gelinsky M, Pompe W, Wenzel KW: Proliferation and differentiation of osteoblasts on Biocement D modified with collagen type I and citric acid. J Biomed Mater Res B Appl Biomater 2004, 71:130-143.
  • [37]Plachokova AS, Van Den Dolder J, Stoelinga PJ, Jansen JA: Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects. Clin Oral Implants Res 2007, 18:244-251.
  • [38]Nair MB, Varma HK, Menon KV, Shenoy SJ, John A: Reconstruction of goat femur segmental defects using triphasic ceramic-coated hydroxyapatite in combination with autologous cells and platelet-rich plasma. Acta Biomater 2009, 5:1742-1755.
  • [39]Kasten P, Vogel J, Luginbuhl R, Niemeyer P, Weiss S, Schneider S, Kramer M, Leo A, Richter W: Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics. Cells Tissues Organs 2006, 183:68-79.
  • [40]Kasten P, Vogel J, Beyen I, Weiss S, Niemeyer P, Leo A, Luginbuhl R: Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference. J Biomater Appl 2008, 23:169-188.
  • [41]Kilian O, Flesch I, Wenisch S, Taborski B, Jork A, Schnettler R, Jonuleit T: Effects of platelet growth factors on human mesenchymal stem cells and human endothelial cells in vitro. Eur J Med Res 2004, 9:337-344.
  文献评价指标  
  下载次数:35次 浏览次数:16次