期刊论文详细信息
GigaScience
Full-length single-cell RNA-seq applied to a viral human cancer: applications to HPV expression and splicing analysis in HeLa S3 cells
Xun Xu8  Yong Hou3  Jian Wang6  Huanming Yang6  Yingrui Li2  Xiuqing Zhang7  Karsten Kristiansen3  Ting Wang1  Jianghao Chen1  Jie Zhang8  Kui Wu8  Liqin Xu8  Guoyun Xie8  Fuqiang Li8  Huan Yang8  Runze Jiang8  Yang Li8  Zhanlong Mei8  Weijian Rao8  Xinxin Lin8  Yanhui Wang8  Qichao Yu1,10  Michael Dean5  Guibo Li3  Bo Li8  Ling Wang1  Zhikun Zhao9  Xiaolong Zhang4  Liang Wu8 
[1] Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, QLD, Australia;Department of Biology, University of Copenhagen, Copenhagen 1599, Denmark;College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;Cancer and Inflammation Program, National Cancer Institute at Frederick, Building 560, Frederick 21702, MD, USA;James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China;The Guangdong Enterprise Key Laboratory of Human Disease Genomics, BGI-Shenzhen, Shenzhen 518083, China;BGI-Shenzhen, Shenzhen 518083, China;School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;BGI-Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
关键词: RNA splicing;    Cancer;    Tumor heterogeneity;    Virus;    HPV;    HeLa;    Single-cell transcriptome;   
Others  :  1231999
DOI  :  10.1186/s13742-015-0091-4
 received in 2015-07-20, accepted in 2015-10-21,  发布年份 2015
PDF
【 摘 要 】

Background

Viral infection causes multiple forms of human cancer, and HPV infection is the primary factor in cervical carcinomas. Recent single-cell RNA-seq studies highlight the tumor heterogeneity present in most cancers, but virally induced tumors have not been studied. HeLa is a well characterized HPV+ cervical cancer cell line.

Result

We developed a new high throughput platform to prepare single-cell RNA on a nanoliter scale based on a customized microwell chip. Using this method, we successfully amplified full-length transcripts of 669 single HeLa S3 cells and 40 of them were randomly selected to perform single-cell RNA sequencing. Based on these data, we obtained a comprehensive understanding of the heterogeneity of HeLa S3 cells in gene expression, alternative splicing and fusions. Furthermore, we identified a high diversity of HPV-18 expression and splicing at the single-cell level. By co-expression analysis we identified 283 E6, E7 co-regulated genes, including CDC25, PCNA, PLK4, BUB1B and IRF1 known to interact with HPV viral proteins.

Conclusion

Our results reveal the heterogeneity of a virus-infected cell line. It not only provides a transcriptome characterization of HeLa S3 cells at the single cell level, but is a demonstration of the power of single cell RNA-seq analysis of virally infected cells and cancers.

【 授权许可】

   
2015 Wu et al.

【 预 览 】
附件列表
Files Size Format View
20151112040953397.pdf 3089KB PDF download
Fig. 5. 148KB Image download
Fig. 4. 88KB Image download
Fig. 3. 144KB Image download
Fig. 2. 93KB Image download
Fig. 1. 106KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F et al.. A review of human carcinogens–part B: biological agents. Lancet Oncol. 2009; 10(4):321-322.
  • [2]Boyle P, Levin B. World cancer report 2008. International Agency for Research on Cancer and World Health Organization Press, Lyon; 2008.
  • [3]de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D et al.. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012; 13(6):607-615.
  • [4]Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe. 2014; 15(3):266-282.
  • [5]Hourdequin KC, Lefferts JA, Brennick JB, Ernstoff MS, Tsongalis GJ, Pipas JM. Merkel cell polyomavirus and extrapulmonary small cell carcinoma. Oncol Lett. 2013; 6(4):1049-1052.
  • [6]Schuster V, Pukrop T. Epstein-Barr virus and nasopharyngeal cancer. N Engl J Med. 1996; 334(2):122-123.
  • [7]Yip KW, Shi W, Pintilie M, Martin JD, Mocanu JD, Wong D et al.. Prognostic significance of the Epstein-Barr virus, p53, Bcl-2, and survivin in nasopharyngeal cancer. Clin Cancer Res. 2006; 12(19):5726-5732.
  • [8]Banks L, Pim D, Thomas M. Human tumour viruses and the deregulation of cell polarity in cancer. Nat Rev Cancer. 2012; 12(12):877-886.
  • [9]da Silva SR, de Oliveira DE. HIV, EBV and KSHV: viral cooperation in the pathogenesis of human malignancies. Cancer Lett. 2011; 305(2):175-185.
  • [10]Mueller N. Overview: viral agents and cancer. Environ Health Perspect. 1995; 103 Suppl 8:259-261.
  • [11]Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006; 45(4):529-538.
  • [12]Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV et al.. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003; 348(6):518-527.
  • [13]Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 2013; 13(2):123-135.
  • [14]Weitzman MD, Weitzman JB. What’s the damage? The impact of pathogens on pathways that maintain host genome integrity. Cell Host Microbe. 2014; 15(3):283-294.
  • [15]Zur Hausen H. The search for infectious causes of human cancers: where and why. Virology. 2009; 392(1):1-10.
  • [16]Moore PS, Chang Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer. 2010; 10(12):878-889.
  • [17]Friemel J, Rechsteiner M, Frick L, Bohm F, Struckmann K, Egger M et al.. Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res. 2015; 21(8):1951-1961.
  • [18]Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B et al.. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010; 467(7319):1114-1117.
  • [19]Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P et al.. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011; 17(9):1086-1093.
  • [20]Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J et al.. Tumour evolution inferred by single-cell sequencing. Nature. 2011; 472(7341):90-94.
  • [21]Ennen M, Keime C, Kobi D, Mengus G, Lipsker D, Thibault-Carpentier C et al.. Single-cell gene expression signatures reveal melanoma cell heterogeneity. Oncogene. 2015; 34(25):3251-3263.
  • [22]Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, Miyamoto DT et al.. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 2014; 8(6):1905-1918.
  • [23]Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H et al.. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014; 344(6190):1396-1401.
  • [24]Twine NA, Janitz K, Wilkins MR, Janitz M. Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer’s disease. PLoS One. 2011; 6(1): Article ID e16266
  • [25]Gey GO, Coffman WD, Kubicek MT. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 1952; 12:264-265.
  • [26]Adey A, Burton JN, Kitzman JO, Hiatt JB, Lewis AP, Martin BK et al.. The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature. 2013; 500(7461):207-211.
  • [27]Landry JJ, Pyl PT, Rausch T, Zichner T, Tekkedil MM, Stutz AM et al.. The genomic and transcriptomic landscape of a HeLa cell line. G3. 2013; 3(8):1213-1224.
  • [28]Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014; 9(1):171-181.
  • [29]Gole J, Gore A, Richards A, Chiu YJ, Fung HL, Bushman D et al.. Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat Biotechnol. 2013; 31(12):1126-1132.
  • [30]Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M et al.. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014; 11(2):163-166.
  • [31]Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM et al.. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014; 24(3):496-510.
  • [32]Marguerat S, Bahler J. Coordinating genome expression with cell size. Trends Genet. 2012; 28(11):560-565.
  • [33]Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S, Foley SW et al.. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol Cell. 2015; 58(2):339-352.
  • [34]Vastrik I, D’Eustachio P, Schmidt E, Gopinath G, Croft D, de Bono B et al.. Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 2007; 8(3):R39. BioMed Central Full Text
  • [35]Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ et al.. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015; 33(2):155-160.
  • [36]Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE et al.. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell. 2002; 13(6):1977-2000.
  • [37]McDavid A, Dennis L, Danaher P, Finak G, Krouse M, Wang A et al.. Modeling bi-modality improves characterization of cell cycle on gene expression in single cells. PLoS Comput Biol. 2014; 10(7): Article ID e1003696
  • [38]Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008; 9:559. BioMed Central Full Text
  • [39]Xu Q, Lee C. Discovery of novel splice forms and functional analysis of cancer-specific alternative splicing in human expressed sequences. Nucleic Acids Res. 2003; 31(19):5635-5643.
  • [40]Liu SS, Chan KY, Cheung AN, Liao XY, Leung TW, Ngan HY. Expression of deltaNp73 and TAp73alpha independently associated with radiosensitivities and prognoses in cervical squamous cell carcinoma. Clin Cancer Res. 2006; 12(13):3922-3927.
  • [41]Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R et al.. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature. 2013; 498(7453):236-240.
  • [42]Pervouchine DD, Knowles DG, Guigo R. Intron-centric estimation of alternative splicing from RNA-seq data. Bioinformatics. 2013; 29(2):273-274.
  • [43]Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007; 7(4):233-245.
  • [44]Edgren H, Murumagi A, Kangaspeska S, Nicorici D, Hongisto V, Kleivi K et al.. Identification of fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol. 2011; 12(1):R6. BioMed Central Full Text
  • [45]Sakarya O, Breu H, Radovich M, Chen Y, Wang YN, Barbacioru C et al.. RNA-Seq mapping and detection of gene fusions with a suffix array algorithm. PLoS Comput Biol. 2012; 8(4): Article ID e1002464
  • [46]Bahrami BF, Ataie-Kachoie P, Pourgholami MH, Morris DL. p70 Ribosomal protein S6 kinase (Rps6kb1): an update. J Clin Pathol. 2014; 67(12):1019-1025.
  • [47]Camuzcuoglu H, Arioz DT, Toy H, Kurt S, Celik H, Aksoy N. Assessment of preoperative serum prolidase activity in epithelial ovarian cancer. Eur J Obstet Gynecol Reprod Biol. 2009; 147(1):97-100.
  • [48]Palka J, Surazynski A, Karna E, Orlowski K, Puchalski Z, Pruszynski K et al.. Prolidase activity disregulation in chronic pancreatitis and pancreatic cancer. Hepatogastroenterology. 2002; 49(48):1699-1703.
  • [49]Arioz DT, Camuzcuoglu H, Toy H, Kurt S, Celik H, Aksoy N. Serum prolidase activity and oxidative status in patients with stage I endometrial cancer. Int J Gynecol Cancer. 2009; 19(7):1244-1247.
  • [50]Tang KW, Alaei-Mahabadi B, Samuelsson T, Lindh M, Larsson E. The landscape of viral expression and host gene fusion and adaptation in human cancer. Nat Commun. 2013; 4:2513.
  • [51]Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X et al.. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 2015; 47(2):158-163.
  • [52]Lazo PA, DiPaolo JA, Popescu NC. Amplification of the integrated viral transforming genes of human papillomavirus 18 and its 5′-flanking cellular sequence located near the myc protooncogene in HeLa cells. Cancer Res. 1989; 49(15):4305-4310.
  • [53]He X, Tan X, Wang X, Jin H, Liu L, Ma L et al.. C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion. Tumour Biol. 2014; 35(12):12181-12188.
  • [54]Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z et al.. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 2014; 24(5):513-531.
  • [55]Li H, Wang J, Mor G, Sklar J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science. 2008; 321(5894):1357-1361.
  • [56]Toots M, Mannik A, Kivi G, Ustav M, Ustav E, Ustav M. The transcription map of human papillomavirus type 18 during genome replication in U2OS cells. PLoS One. 2014; 9(12): Article ID e116151
  • [57]Filippova M, Evans W, Aragon R, Filippov V, Williams VM, Hong L et al.. The small splice variant of HPV16 E6, E6, reduces tumor formation in cervical carcinoma xenografts. Virology. 2014; 450–451:153-164.
  • [58]Pim D, Banks L. HPV-18 E6*I protein modulates the E6-directed degradation of p53 by binding to full-length HPV-18 E6. Oncogene. 1999; 18(52):7403-7408.
  • [59]Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990; 63(6):1129-1136.
  • [60]Kilic G, Cardillo M, Ozdemirli M, Arun B. Human papillomavirus 18 oncoproteins E6 and E7 enhance irradiation- and chemotherapeutic agent-induced apoptosis in p53 and Rb mutated cervical cancer cell lines. Eur J Gynaecol Oncol. 1999; 20(3):167-171.
  • [61]Bellanger S, Tan CL, Nei W, He PP, Thierry F. The human papillomavirus type 18 E2 protein is a cell cycle-dependent target of the SCFSkp2 ubiquitin ligase. J Virol. 2010; 84(1):437-444.
  • [62]Theelen W, Reijans M, Simons G, Ramaekers FC, Speel EJ, Hopman AH. A new multiparameter assay to assess HPV 16/18, viral load and physical status together with gain of telomerase genes in HPV-related cancers. Int J Cancer. 2010; 126(4):959-975.
  • [63]Pagano M, Durst M, Joswig S, Draetta G, Jansen-Durr P. Binding of the human E2F transcription factor to the retinoblastoma protein but not to cyclin A is abolished in HPV-16-immortalized cells. Oncogene. 1992; 7(9):1681-1686.
  • [64]Katich SC, Zerfass-Thome K, Hoffmann I. Regulation of the Cdc25A gene by the human papillomavirus Type 16 E7 oncogene. Oncogene. 2001; 20(5):543-550.
  • [65]Funk JO, Waga S, Harry JB, Espling E, Stillman B, Galloway DA. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 1997; 11(16):2090-2100.
  • [66]Korzeniewski N, Treat B, Duensing S. The HPV-16 E7 oncoprotein induces centriole multiplication through deregulation of Polo-like kinase 4 expression. Mol Cancer. 2011; 10:61. BioMed Central Full Text
  • [67]Lira RC, Miranda FA, Guimaraes MC, Simoes RT, Donadi EA, Soares CP et al.. BUBR1 expression in benign oral lesions and squamous cell carcinomas: correlation with human papillomavirus. Oncol Rep. 2010; 23(4):1027-1036.
  • [68]Um SJ, Rhyu JW, Kim EJ, Jeon KC, Hwang ES, Park JS. Abrogation of IRF-1 response by high-risk HPV E7 protein in vivo. Cancer Lett. 2002; 179(2):205-212.
  • [69]Lau CC, Sun T, Ching AK, He M, Li JW, Wong AM et al.. Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell. 2014; 25(3):335-349.
  • [70]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al.. Initial sequencing and analysis of the human genome. Nature. 2001; 409(6822):860-921.
  • [71]Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S et al.. Ensembl 2014. Nucleic Acids Res. 2014; 42(Database issue):D749-D755.
  • [72]Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F et al.. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012; 22(9):1760-1774.
  • [73]Brister JR, Ako-Adjei D, Bao Y, Blinkova O. NCBI viral genomes resource. Nucleic Acids Res. 2015; 43(Database issue):D571-D577.
  • [74]Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR et al.. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012; 7(3):562-578.
  • [75]Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3):R25. BioMed Central Full Text
  • [76]Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4):357-359.
  • [77]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al.. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25(16):2078-2079.
  • [78]Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139-140.
  • [79]Pervouchine D. Integrative Pipeline for Splicing Analyses (IPSA) Package v3.1. https://github.com/pervouchine/ipsa. Accessed 1 Oct. 2014.
  • [80]Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G et al.. Integrative genomics viewer. Nat Biotechnol. 2011; 29(1):24-26.
  • [81]Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011; 12(8):R72. BioMed Central Full Text
  • [82]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al.. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545-15550.
  • [83]Wu L, Zhang X, Zhao Z, Wang L, Li B, Li G, et al. Supporting data for “Full-length single-cell RNA-seq applied to a viral human cancer: application to human papillomavirus expression and splicing analysis in HeLa S3 cells”. GigaScience Database. 2015;. http://dx. doi.org/10.5524/100160 webcite
  文献评价指标  
  下载次数:5次 浏览次数:17次