期刊论文详细信息
Journal of Nanobiotechnology
Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines
Dinesh K Singh1  Anil Mahapatro2 
[1] Department of Life Sciences, Winston- Salem State University, 601 S MLK Jr. Drive Winston Salem, NC 27110, USA;Bioengineering Program & Department of Industrial and Manufacturing Engineering, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, USA
关键词: gene delivery;    drug delivery;    vaccine delivery;    polyesters;    nanoparticles;    Biodegradable;   
Others  :  822022
DOI  :  10.1186/1477-3155-9-55
 received in 2011-09-27, accepted in 2011-11-28,  发布年份 2011
PDF
【 摘 要 】

Biodegradable nanoparticles (NPs) are gaining increased attention for their ability to serve as a viable carrier for site specific delivery of vaccines, genes, drugs and other biomolecules in the body. They offer enhanced biocompatibility, superior drug/vaccine encapsulation, and convenient release profiles for a number of drugs, vaccines and biomolecules to be used in a variety of applications in the field of medicine. In this manuscript, the methods of preparation of biodegradable NPs, different factors affecting optimal drug encapsulation, factors affecting drug release rates, various surface modifications of nanoparticles to enhance in-vivo circulation, distribution and multimodal functionalities along with the specific applications such as tumor targeting, oral delivery, and delivery of these particles to the central nervous system have been reviewed.

【 授权许可】

   
2011 Mahapatro and Singh; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712092101805.pdf 523KB PDF download
Figure 8. 13KB Image download
Figure 7. 17KB Image download
Figure 6. 20KB Image download
Figure 5. 7KB Image download
Figure 4. 11KB Image download
Figure 3. 12KB Image download
Figure 2. 36KB Image download
Figure 2. 134KB Image download
【 图 表 】

Figure 2.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Xu T, Zhang N, Nichols HL, Shi D, Wen X: Modification of nanostructured materials for biomedical applications. Materials Science and Engineering: C 2007, 27(3):579-594.
  • [2]Mohanraj VJ, Chem Y: Nanoparticles-A Review. Tropical Journal of Pharmaceutical Research 2006, 5(1):561-573.
  • [3]Liu Y, Miyoshi H, Nakamura M: Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. International Journal of Cancer 2007, 120(12):2527-2537.
  • [4]van Vlerken LE, Amiji MM: Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opinion on Drug Delivery 2006, 3(2):205-216.
  • [5]Vasir JK, Labhasetwar V: Biodegradable nanoparticles for cytosolic delivery of therapeutics. Advanced Drug Delivery Reviews 2007, 59(8):718-728.
  • [6]Labhasetwar V, Song C, Levy RJ: Nanoparticle drug delivery system for restenosis. Advanced Drug Delivery Reviews 1997, 24(1):63-85.
  • [7]Hans ML, Lowman AM: Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science 2002, 6(4):319-327.
  • [8]Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE: Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release 2001, 70(1-2):1-20.
  • [9]Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC: New Generation of Multifunctional Nanoparticles for Cancer Imaging and Therapy. Advanced Functional Materials 2009, 19(10):1553-1566.
  • [10]Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F: Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 2006, 2(1):8-21.
  • [11]Scholes PD, Coombes AGA, Illum L, Daviz SS, Vert M, Davies MC: The preparation of sub-200 nm poly(lactide-co-glycolide) microspheres for site-specific drug delivery. Journal of Controlled Release 1993, 25(1-2):145-153.
  • [12]Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y: Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D, L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. Journal of Controlled Release 1993, 25(1-2):89-98.
  • [13]Govender T, Stolnik S, Garnett MC, Illum L, Davis SS: PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. Journal of Controlled Release 1999, 57(2):171-185.
  • [14]Zweers MLT, Engbers GHM, Grijpma DW, Feijen J: In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide). Journal of Controlled Release 2004, 100(3):347-356.
  • [15]Eley JG, Pujari VD, McLane J: Poly (Lactide-co-Glycolide) Nanoparticles Containing Coumarin-6 for Suppository Delivery: In Vitro Release Profile and In Vivo Tissue Distribution. 2004, 11(4):255-261.
  • [16]Zhang Q, Shen Z, Nagai T: Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. International Journal of Pharmaceutics 2001, 218(1-2):75-80.
  • [17]Boudad H, Legrand P, Lebas G, Cheron M, Duchêne D, Ponchel G: Combined hydroxypropyl-[beta]-cyclodextrin and poly(alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. International Journal of Pharmaceutics 2001, 218(1-2):113-124.
  • [18]Puglisi G, Fresta M, Giammona G, Ventura CA: Influence of the preparation conditions on poly(ethylcyanoacrylate) nanocapsule formation. International Journal of Pharmaceutics 1995, 125(2):283-287.
  • [19]Toshio Y, Mitsuru H, Shozo M, Hitoshi S: Specific delivery of mitomycin c to the liver, spleen and lung: Nano- and m1crospherical carriers of gelatin. International Journal of Pharmaceutics 1981, 8(2):131-141.
  • [20]Kwok KK, Groves M, Burgess D: Production of 5-15 μm Diameter Alginate-Polylysine Microcapsules by an Air-Atomization Technique. Pharmaceutical Research 1991, 8(3):341-344.
  • [21]Aslani P, Kennedy RA: Studies on diffusion in alginate gels. I. Effect of cross-linking with calcium or zinc ions on diffusion of acetaminophen. Journal of Controlled Release 1996, 42(1):75-82.
  • [22]Calvo P, Remuñan-López C, Vila-Jato JL, Alonso MJ: Chitosan and Chitosan/Ethylene Oxide-Propylene Oxide Block Copolymer Nanoparticles as Novel Carriers for Proteins and Vaccines. Pharmaceutical Research 1997, 14(10):1431-1436.
  • [23]Kumari A, Yadav SK, Yadav SC: Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces 2010, 75(1):1-18.
  • [24]Carrasquillo KG, Stanley AM, Aponte-Carro JC, De Jésus P, Costantino HR, Bosques CJ, Griebenow K: Non-aqueous encapsulation of excipient-stabilized spray-freeze dried BSA into poly(lactide-co-glycolide) microspheres results in release of native protein. Journal of Controlled Release 2001, 76(3):199-208.
  • [25]Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S: Nanocapsule formation by interfacial polymer deposition following solvent displacement. International Journal of Pharmaceutics 1989, 55(1):R1-R4.
  • [26]Choi C, Chae SY, Nah J-W: Thermosensitive poly(N-isopropylacrylamide)-b-poly([epsilon]-caprolactone) nanoparticles for efficient drug delivery system. Polymer 2006, 47(13):4571-4580.
  • [27]Kim SY, Lee YM: Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(caprolactone) as novel anticancer drug carriers. Biomaterials 2001, 22(13):1697-1704.
  • [28]Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S: Chitosan microspheres as a potential carrier for drugs. International Journal of Pharmaceutics 2004, 274(1-2):1-33.
  • [29]Gan Q, Wang T: Chitosan nanoparticle as protein delivery carrier--Systematic examination of fabrication conditions for efficient loading and release. Colloids and Surfaces B: Biointerfaces 2007, 59(1):24-34.
  • [30]Zillies JC, Zwiorek K, Hoffmann F, Vollmar A, Anchordoquy TJ, Winter G, Coester C: Formulation development of freeze-dried oligonucleotide-loaded gelatin nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 2008, 70(2):514-521.
  • [31]Ofokansi K, Winter G, Fricker G, Coester C: Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. European Journal of Pharmaceutics and Biopharmaceutics 76(1):1-9.
  • [32]Kim D, El-Shall H, Dennis D, Morey T: Interaction of PLGA nanoparticles with human blood constituents. Colloids and Surfaces B: Biointerfaces 2005, 40(2):83-91.
  • [33]Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Müller RH: 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B: Biointerfaces 2000, 18(3-4):301-313.
  • [34]Gref R, Couvreur P, Barratt G, Mysiakine E: Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials 2003, 24(24):4529-4537.
  • [35]Leroux J-C, Allémann E, De Jaeghere F, Doelker E, Gurny R: Biodegradable nanoparticles -- From sustained release formulations to improved site specific drug delivery. Journal of Controlled Release 1996, 39(2-3):339-350.
  • [36]Tobío M, Sánchez A, Vila A, Soriano I, Evora C, Vila-Jato JL, Alonso MJ: The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids and Surfaces B: Biointerfaces 2000, 18(3-4):315-323.
  • [37]Vila A, Sánchez A, TobIo M, Calvo P, Alonso MJ: Design of biodegradable particles for protein delivery. Journal of Controlled Release 2002, 78(1-3):15-24.
  • [38]Torchilin VP, Trubetskoy VS: Which polymers can make nanoparticulate drug carriers long-circulating? Advanced Drug Delivery Reviews 1995, 16(2-3):141-155.
  • [39]Stolnik S, Illum L, Davis SS: Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews 1995, 16(2-3):195-214.
  • [40]Storm G, Belliot SO, Daemen T, Lasic DD: Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Advanced Drug Delivery Reviews 1995, 17(1):31-48.
  • [41]Shenoy DB, Amiji MM: Poly(ethylene oxide)-modified poly(caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. International Journal of Pharmaceutics 2005, 293(1-2):261-270.
  • [42]Mahapatro A, Johnson DM, Patel DN, Feldman MD, Ayon AA, Agrawal CM: Drug Delivery from Therapeutic Self-Assembled Monolayers (T-SAMs) on 316L Stainless Steel. Current Topics in Medicinal Chemistry 2008, 8(4):281-289.
  • [43]Nobs L, Buchegger F, Gurny R, Allémann E: Biodegradable Nanoparticles for Direct or Two-Step Tumor Immunotargeting. Bioconjugate Chemistry 2005, 17(1):139-145.
  • [44]Verdun C, Brasseur F, Vranckx H, Couvreur P, Roland M: Tissue distribution of doxorubicin associated with polyisohexylcyanoacrylate nanoparticles. Cancer Chemotherapy and Pharmacology 1990, 26(1):13-18.
  • [45]Couvreur P, Kante B, Lenaerts V, Scailteur V, Roland M, Speiser P: Tissue distribution of antitumor drugs associated with polyalkylcyanoacrylate nanoparticles. Journal of Pharmaceutical Sciences 1980, 69(2):199-202.
  • [46]Stella B, Arpicco S, Peracchia MT, Desmaële D, Hoebeke J, Renoir M, D'Angelo J, Cattel L, Couvreur P: Design of folic acid-conjugated nanoparticles for drug targeting. Journal of Pharmaceutical Sciences 2000, 89(11):1452-1464.
  • [47]Oyewumi MO, Yokel RA, Jay M, Coakley T, Mumper RJ: Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. Journal of Controlled Release 2004, 95(3):613-626.
  • [48]Pandey R, Ahmad Z, Sharma S, Khuller GK: Nano-encapsulation of azole antifungals: Potential applications to improve oral drug delivery. International Journal of Pharmaceutics 2005, 301(1-2):268-276.
  • [49]Damgé C, Michel C, Aprahamian M, Couvreur P, Devissaguet JP: Nanocapsules as carriers for oral peptide delivery. Journal of Controlled Release 1990, 13(2-3):233-239.
  • [50]Lemoine D, Préat V: Polymeric nanoparticles as delivery system for influenza virus glycoproteins. Journal of Controlled Release 1998, 54(1):15-27.
  • [51]Torché A-M, Jouan H, Le Corre P, Albina E, Primault R, Jestin A, Le Verge R: Ex vivo and in situ PLGA microspheres uptake by pig ileal Peyer's patch segment. International Journal of Pharmaceutics 2000, 201(1):15-27.
  • [52]Jenkins PG, Howard KA, Blackball NW, Thomas NW, Davis SS, O'Hagan DT: Microparticulate absorption from the rat intestine. Journal of Controlled Release 1994, 29(3):339-350.
  • [53]Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR: Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the peyer's patches. Journal of Controlled Release 1990, 11(1-3):205-214.
  • [54]Dai J, Nagai T, Wang X, Zhang T, Meng M, Zhang Q: pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. International Journal of Pharmaceutics 2004, 280(1-2):229-240.
  • [55]Gurunathan S, Wu C-Y, Freidag BL, Seder RA: DNA vaccines: a key for inducing long-term cellular immunity. Current Opinion in Immunology 2000, 12(4):442-447.
  • [56]Panyam J, Zhou W-Z, Prabha S, Sahoo SK, Labhasetwar V: Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. The FASEB Journal 2002, 16(10):1217-1226.
  • [57]Hedley ML, Curley J, Urban R: Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat Med 1998, 4(3):365-368.
  • [58]Chakraborty C, Sarkar B, Hsu C, Wen Z, Lin C, Shieh P: Future prospects of nanoparticles on brain targeted drug delivery. Journal of Neuro-Oncology 2009, 93(2):285-286.
  • [59]Chen Y, Dalwadi G, Benson HAE: Drug Delivery Across the Blood-Brain Barrier. Current Drug Delivery 2004, 1(4):361-376.
  • [60]Gabathuler R, Arthur G, Kennard M, Chen Q, Tsai S, Yang J, Schoorl W, Vitalis TZ, Jefferies WA: Development of a potential protein vector (NeuroTrans) to deliver drugs across the blood-brain barrier. International Congress Series 2005, 1277:171-184.
  • [61]Ji B, Maeda J, Higuchi M, Inoue K, Akita H, Harashima H, Suhara T: Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sciences 2006, 78(8):851-855.
  • [62]Pardridge WM: Drug and gene targeting to the brain with molecular trojan horses. Nat Rev Drug Discov 2002, 1(2):131-139.
  • [63]Scherrmann J-M, Temsamani J: The use of Pep: Trans vectors for the delivery of drugs into the central nervous system. International Congress Series 2005, 1277:199-211.
  • [64]Olivier J-C: Drug Transport to Brain with Targeted Nanoparticles. NeuroRx: the journal of the American Society for Experimental NeuroTherapeutics 2005, 2(1):108-119.
  • [65]Pardridge WM: Drug and gene targeting to the brain via blood-brain barrier receptor-mediated transport systems. International Congress Series 2005, 1277:49-62.
  • [66]Kreuter J: Nanoparticulate systems for brain delivery of drugs. Advanced Drug Delivery Reviews 2001, 47(1):65-81.
  • [67]Sun W, Xie C, Wang H, Hu Y: Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials 2004, 25(15):3065-3071.
  • [68]Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD: Brain uptake of thiamine-coated nanoparticles. Journal of Controlled Release 2003, 93(3):271-282.
  文献评价指标  
  下载次数:92次 浏览次数:30次