期刊论文详细信息
European Journal of Medical Research
Spinning around or stagnation - what do osteoblasts and chondroblasts really like?
M Jäger1  S Lensing-Höhn1  R Krauspe1  B Bittersohl1  T Lögters1  C Zilkens1 
[1] Department of Orthopaedics, Heinrich-Heine University of Duesseldorf, Germany
关键词: chondroblast;    osteoblast;    differentiation;    cytomechanical forces;    mesenchymal stem cells;   
Others  :  1093370
DOI  :  10.1186/2047-783X-15-1-35
 received in 2009-04-03, accepted in 2009-08-05,  发布年份 2010
PDF
【 摘 要 】

Objective

The influcence of cytomechanical forces in cellular migration, proliferation and differentation of mesenchymal stem cells (MSCs) is still poorly understood in detail.

Methods

Human MSCs were isolated and cultivated onto the surface of a 3 × 3 mm porcine collagen I/III carrier. After incubation, cell cultures were transfered to the different cutures systems: regular static tissue flasks (group I), spinner flasks (group II) and rotating wall vessels (group III). Following standard protocols cells were stimulated lineage specific towards the osteogenic and chondrogenic lines. To evaluate the effects of applied cytomechanical forces towards cellular differentiation distinct parameters were measured (morphology, antigen and antigen expression) after a total cultivation period of 21 days in vitro.

Results

Depending on the cultivation technique we found significant differences in both gen and protein expression.

Conclusion

Cytomechanical forces with rotational components strongly influence the osteogenic and chondrogenic differentiation.

【 授权许可】

   
2010 I. Holzapfel Publishers

【 预 览 】
附件列表
Files Size Format View
20150130162708945.pdf 3672KB PDF download
Figure 8. 129KB Image download
Figure 7. 118KB Image download
Figure 6. 166KB Image download
Figure 5. 193KB Image download
Figure 4. 65KB Image download
Figure 3. 60KB Image download
Figure 2. 159KB Image download
Figure 1. 165KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Jäger M, Westhoff B, Wild A, Krauspe R: Bone harvesting from the iliac crest. Orthopade 2005, 34(10):976-982. 84, 86-90, 92-94
  • [2]Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA: Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 1996, 329:300-309.
  • [3]Younger EM, Chapman MW: Morbidity at bone graft donor sites. J Orthop Trauma 1989, 3(3):192-195.
  • [4]Muschler GF, Huber B, Ullman T, Barth R, Easley K, Otis JO, Lane JM: Evaluation of bone-grafting materials in a new canine segmental spinal fusion model. J Orthop Res 1993, 11(4):514-524.
  • [5]Gronthos S, Simmons PJ: The biology and application of human bone marrow stromal cell precursors. J Hematother 1996, 5(1):15-23.
  • [6]Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997, 64(2):295-312.
  • [7]Aubin JE: Osteoprogenitor cell frequency in rat bone marrow stromal populations: role for heterotypic cell-cell interactions in osteoblast differentiation. J Cell Biochem 1999, 72(3):396-410.
  • [8]Haynesworth SE, Goshima J, Goldberg VM, Caplan AI: Characterization of cells with osteogenic potential from human marrow. Bone 1992, 13(1):81-88.
  • [9]Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG: Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 1997, 36(1):17-28.
  • [10]van den Dolder J, Farber E, Spauwen PH, Jansen JA: Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials 2003, 24(10):1745-1750.
  • [11]Ohgushi H, Caplan AI: Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res 1999, 48(6):913-927.
  • [12]Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG: Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 1998, 19(15):1405-1412.
  • [13]Freed L, Vunjak-Novacovic G: Tissue engineering bioreactors. In Principles of Tissue Engineering. 2nd edition. Edited by Lanza R, Langer R, Vacanti J. San Diego, CA: Academic Press; 2000:143-56.
  • [14]Wang TW, Wu HC, Wang HY, Lin FH, Sun JS: Regulation of adult human mesenchymal stem cells into osteogenic and chondrogenic lineages by different bioreactor systems. J Biomed Mater Res A 2008.
  • [15]Kale S, Biermann S, Edwards C, Tarnowski C, Morris M, Long MW: Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat Biotechnol 2000, 18(9):954-958.
  • [16]Vunjak-Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE: Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 1999, 17(1):130-138.
  • [17]Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG: Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 2001, 22(11):1279-1288.
  • [18]Sikavitsas VI, Bancroft GN, Mikos AG: Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J Biomed Mater Res 2002, 62(1):136-148.
  • [19]Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L, Kaplan D, Langer R, Vunjak-Novakovic G: Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng 2004, 32(1):112-122.
  • [20]Long MW: Osteogenesis and bone-marrow-derived cells. Blood Cells Mol Dis 2001, 27(3):677-690.
  • [21]Wang TW, Wu HC, Huang YC, Sun JS, Lin FH: Biomimetic bilayered gelatin-chondroitin 6 sulfate-hyaluronic acid biopolymer as a scaffold for skin equivalent tissue engineering. Artif Organs 2006, 30(3):141-149.
  • [22]Schwarz RP, Goodwin TJ, Wolf DA: Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J Tissue Cult Methods 1992, 14(2):51-57.
  • [23]Qiu QQ, Ducheyne P, Ayyaswamy PS: Fabrication, characterization and evaluation of bioceramic hollow microspheres used as microcarriers for 3-D bone tissue formation in rotating bioreactors. Biomaterials 1999, 20(11):989-1001.
  • [24]Botchwey EA, Pollack SR, Levine EM, Laurencin CT: Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. J Biomed Mater Res 2001, 55(2):242-253.
  • [25]Vunjak-Novakovic G, Obradovic B, Martin I, Bursac PM, Langer R, Freed LE: Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog 1998, 14(2):193-202.
  • [26]Jager M, Feser T, Denck H, Krauspe R: Proliferation and osteogenic differentiation of mesenchymal stem cells cultured onto three different polymers in vitro. Ann Biomed Eng 2005, 33(10):1319-1332.
  • [27]Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Mar shak DR: Multilineage potential of adult human mesen chymal stem cells. Science 1999, 284(5411):143-147.
  • [28]Riddle RC, Donahue HJ: From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction. J Orthop Res 2009, 27(2):143-149.
  • [29]Spray DC, Ye ZC, Ransom BR: Functional connexin "hemichannels": a critical appraisal. Glia 2006, 54(7):758-773.
  • [30]Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ: Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 2007, 212(1):207-214.
  • [31]Jiang JX, Cherian PP: Hemichannels formed by connexin 43 play an important role in the release of prostaglandin E(2) by osteocytes in response to mechanical strain. Cell Commun Adhes 2003, 10(4-6):259-264.
  • [32]Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX: Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 2005, 16(7):3100-3106.
  • [33]Ziambaras K, Lecanda F, Steinberg TH, Civitelli R: Cyclic stretch enhances gap junctional communication between osteoblastic cells. J Bone Miner Res 1998, 13(2):218-228.
  • [34]McAllister TN, Frangos JA: Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J Bone Miner Res 1999, 14(6):930-936.
  • [35]Ponik SM, Triplett JW, Pavalko FM: Osteoblasts and osteocytes respond differently to oscillatory and unidirectional fluid flow profiles. J Cell Biochem 2007, 100(3):794-807.
  • [36]Li YJ, Batra NN, You L, Meier SC, Coe IA, Yellowley CE, Jacobs CR: Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J Orthop Res 2004, 22(6):1283-1289.
  • [37]Riddle RC, Taylor AF, Genetos DC, Donahue HJ: MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am J Physiol Cell Physiol 2006, 290(3):C776-C784.
  • [38]Grodzinsky A, Kamm R, Lauffenburger D: Quantitative aspects of tissue engineering: Basic issues in kinetics, transport, and mechanics. In Principles of Tissue Engineering. San Diego: Academic Press; 2000:195-206.
  • [39]Mueller SM, Mizuno S, Gerstenfeld LC, Glowacki J: Medium perfusion enhances osteogenesis by murine osteosarcoma cells in three-dimensional collagen sponges. J Bone Miner Res 1999, 14(12):2118-2126.
  • [40]Chen X, Xu H, Wan C, McCaigue M, Li G: Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells. Stem Cells 2006, 24(9):2052-2059.
  • [41]Zhao F, Chella R, Ma T: Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: Experiments and hydrodynamic modeling. Biotechnol Bioeng 2007, 96(3):584-595.
  • [42]Huang CY, Reuben PM, Cheung HS: Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Stem Cells 2005, 23(8):1113-1121.
  • [43]Mouw JK, Connelly JT, Wilson CG, Michael KE, Levenston ME: Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells 2007, 25(3):655-663.
  • [44]Caplan AI: Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 2005, 11(7-8):1198-1211.
  • [45]Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S: Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 1998, 355(Suppl):S247-S256.
  • [46]Mauney JR, Volloch V, Kaplan DL: Role of adult mesenchymal stem cells in bone tissue engineering applications: current status and future prospects. Tissue Eng 2005, 11(5-6):787-802.
  • [47]Barry FP, Murphy JM: Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004, 36(4):568-584.
  • [48]da Silva Meirelles L, Chagastelles PC, Nardi NB: Mesen chymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006, 119(Pt 11):2204-2213.
  • [49]Holtorf HL, Jansen JA, Mikos AG: Flow perfusion culture induces the osteoblastic differentiation of marrow stroma cell-scaffold constructs in the absence of dexa methasone. J Biomed Mater Res A 2005, 72(3):326-334.
  • [50]Abukawa H, Terai H, Hannouche D, Vacanti JP, Kaban LB, Troulis MJ: Formation of a mandibular condyle in vitro by tissue engineering. J Oral Maxillofac Surg 2003, 61(1):94-100.
  • [51]Qiu Q, Ducheyne P, Gao H, Ayyaswamy P: Formation and differentiation of three-dimensional rat marrow stromal cell culture on microcarriers in a rotating-wall vessel. Tissue Eng 1998, 4(1):19-34.
  • [52]Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG: Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 2002, 99(20):12600-12605.
  • [53]Sikavitsas VI, Bancroft GN, Holtorf HL, Jansen JA, Mikos AG: Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc Natl Acad Sci USA 2003, 100(25):14683-14688.
  • [54]Chou YF, Dunn JC, Wu BM: In vitro response of MC3T3-E1 pre-osteoblasts within three-dimensional apatite-coated PLGA scaffolds. J Biomed Mater Res B Appl Biomater 2005, 75(1):81-90.
  • [55]Rucci N, Migliaccio S, Zani BM, Taranta A, Teti A: Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved Rotating Wall Vessel bioreactor (RWV). J Cell Biochem 2002, 85(1):167-179.
  • [56]Reich KM, McAllister TN, Gudi S, Frangos JA: Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts. Endocrinology 1997, 138(3):1014-1018.
  • [57]Nauman EA, Satcher RL, Keaveny TM, Halloran BP, Bikle DD: Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE(2) but no change in mineralization. J Appl Physiol 2001, 90(5):1849-1854.
  • [58]Bakker AD, Soejima K, Klein-Nulend J, Burger EH: The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J Biomech 2001, 34(5):671-677.
  • [59]Iqbal J, Zaidi M: Molecular regulation of mechanotransduction. Biochem Biophys Res Commun 2005, 328(3):751-755.
  • [60]Vance J, Galley S, Liu DF, Donahue SW: Mechanical stimulation of MC3T3 osteoblastic cells in a bone tissue-engineering bioreactor enhances prostaglandin E2 release. Tissue Eng 2005, 11(11-12):1832-1839.
  • [61]Roughley PJ, Lee ER: Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 1994, 28(5):385-397.
  文献评价指标  
  下载次数:0次 浏览次数:17次