GigaScience | |
A dataset comprising 141 magnetic resonance imaging scans of 98 extant sea urchin species | |
Leif Schröder1  Nina Nagelmann4  Susanne Mueller3  Cornelius Faber4  Alexander Ziegler2  | |
[1] Molecular Imaging Group, Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany;Ziegler Biosolutions, Fahrgasse 5, 79761 Waldshut-Tiengen, Germany;Centrum für Schlaganfallforschung, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;Institut für Klinische Radiologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany | |
关键词: Morphomics; Evolution; Repository; Anatomy; Systematics; Soft tissue; Morphology; Echinoidea; Echinodermata; MRI; | |
Others : 1118583 DOI : 10.1186/2047-217X-3-21 |
|
received in 2014-08-02, accepted in 2014-09-30, 发布年份 2014 | |
【 摘 要 】
Background
Apart from its application in human diagnostics, magnetic resonance imaging (MRI) can also be used to study the internal anatomy of zoological specimens. As a non-invasive imaging technique, MRI has several advantages, such as rapid data acquisition, output of true three-dimensional imagery, and provision of digital data right from the onset of a study. Of particular importance for comparative zoological studies is the capacity of MRI to conduct high-throughput analyses of multiple specimens. In this study, MRI was applied to systematically document the internal anatomy of 98 representative species of sea urchins (Echinodermata: Echinoidea).
Findings
The dataset includes raw and derived image data from 141 MRI scans. Most of the whole sea urchin specimens analyzed were obtained from museum collections. The attained scan resolutions permit differentiation of various internal organs, including the digestive tract, reproductive system, coelomic compartments, and lantern musculature. All data deposited in the GigaDB repository can be accessed using open source software. Potential uses of the dataset include interactive exploration of sea urchin anatomy, morphometric and volumetric analyses of internal organs observed in their natural context, as well as correlation of hard and soft tissue structures.
Conclusions
The dataset covers a broad taxonomical and morphological spectrum of the Echinoidea, focusing on ‘regular’ sea urchin taxa. The deposited files significantly expand the amount of morphological data on echinoids that are electronically available. The approach chosen here can be extended to various other vertebrate and invertebrate taxa. We argue that publicly available digital anatomical and morphological data gathered during experiments involving non-invasive imaging techniques constitute one of the prerequisites for future large-scale genotype—phenotype correlations.
【 授权许可】
2014 Ziegler et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150206041135841.pdf | 169KB | download |
【 参考文献 】
- [1]Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, et al.: The genome of the sea urchin Strongylocentrotus purpuratus. Science 2006, 314:941-952. doi:10.1126/science.1133609
- [2]Ziegler A, Faber C, Mueller S, Bartolomaeus T: Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging. BMC Biol 2008, 6:33. doi:10.1186/1741-7007-6-33 BioMed Central Full Text
- [3]Ziegler A, Kunth M, Mueller S, Bock C, Pohmann R, Schröder L, Faber C, Giribet G: Application of magnetic resonance imaging in zoology. Zoomorphology 2011, 130:227-254. doi:10.1007/s00435-011-0138-8
- [4]Berquist RM, Gledhill KM, Peterson MW, Doan AH, Baxter GT, Yopak KE, Kang N, Walker HJ, Hastings PA, Frank LR: The Digital Fish Library: using MRI to digitize, database, and document the morphological diversity of fish. PLoS One 2012, 7:e34499. doi:10.1371/journal.pone.0034499
- [5]Giribet G: A new dimension in combining data? The use of morphology and phylogenomic data in metazoan systematics. Acta Zool 2010, 91:11-19. doi:10.1111/j.1463-6395.2009.00420.x
- [6]Ziegler A, Ogurreck M, Steinke T, Beckmann F, Prohaska S, Ziegler A: Opportunities and challenges for digital morphology. Biol Direct 2010, 5:45. doi:10.1186/1745-6150-5-45 BioMed Central Full Text
- [7]Ziegler A, Mueller S: Analysis of freshly fixed and museum invertebrate specimens using high-resolution, high-throughput MRI. Meth Mol Biol 2011, 771:633-651. doi:10.1007/978-1-61779-219-9_32
- [8]Ziegler A, Faber C, Mueller S, Nagelmann N, Schröder L: MRI scans of whole sea urchin specimens. Giga Science Database 2014. http://dx.doi.org/10.5524/100124 webcite
- [9]NIH: ImageJ - image processing and analysis in Java. http://imagej.nih.gov/ij/ webcite
- [10]Meijering E: TransformJ - a Java package for geometrical image transformation. http://www.imagescience.org/meijering/software/transformj/ webcite
- [11]Sigl R, Imhof H, Settles M, Laforsch C: A novel, non-invasive and in vivo approach to determine morphometric data in starfish. J Exp Mar Biol Ecol 2013, 449:1-9. doi:10.1016/j.jembe.2013.08.002
- [12]Ziegler A, Menze BH: Accelerated Acquisition, Visualization, and Analysis of zoo-Anatomical Data. In Computation for Humanity: Information Technology to Advance Society. Edited by Zander J, Mostermann PJ. Boca Raton: CRC Press; 2013:233-260.
- [13]Ziegler A, Faber C, Mueller S: 3D visualization of sea urchin anatomy. http://www.nhm.ac.uk/research-curation/research/projects/echinoid-directory/models/ webcite
- [14]Ziegler A: Broad application of non-invasive imaging techniques to echinoids and other echinoderm taxa. Zoosymposia 2012, 7:53-70.
- [15]Ziegler A, Schröder L, Ogurreck M, Faber C, Stach T: Evolution of a novel muscle design in sea urchins (Echinodermata: Echinoidea). PLoS One 2012, 7:e37520. doi:10.1371/journal.pone.0037520
- [16]Ziegler A, Faber C, Bartolomaeus T: Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea). Front Zool 2009, 6:10. doi:10.1186/1742-9994-6-10 BioMed Central Full Text
- [17]Ziegler A, Mooi R, Rolet G, De Ridder C: Origin and evolutionary plasticity of the gastric caecum in sea urchins (Echinodermata: Echinoidea). BMC Evol Biol 2010, 10:313. doi:10.1186/1471-2148-10-313 BioMed Central Full Text
- [18]Ziegler A: Rediscovery of an internal organ in heart urchins (Echinoidea: Spatangoida): morphology and evolution of the intestinal caecum. Org Div Evol 2014. doi:10.1007/s13127-014-0178-2
- [19]Holland ND, Ghiselin MT: Magnetic resonance imaging (MRI) has failed to distinguish between smaller gut regions and larger haemal sinuses in sea urchins (Echinodermata: Echinoidea). BMC Biol 2009, 7:39. doi:10.1186/1741-7007-7-39 BioMed Central Full Text
- [20]Rowe T, Frank LR: The disappearing third dimension. Science 2010, 331:712-714. doi:10.1126/science.1202828
- [21]Altenberg L: Modularity in Evolution: Some low-Level Questions. In Modularity: Understanding the Development and Evolution of Complex Natural Systems. Edited by Callebaut W, Rasskin-Gutman D. Cambridge: MIT Press; 2005:99-128.
- [22]Hrynaszkiewicz I, Cockerill MJ: Open by default: a proposed copyright license and waiver agreement for open access research and data in peer-reviewed journals. BMC Res Notes 2012, 5:494. doi:10.1186/1756-0500-5-494 BioMed Central Full Text