Journal of Neuroinflammation | |
Interferon regulatory factor (IRF) 3 is critical for the development of experimental autoimmune encephalomyelitis | |
Bruno Gran1  Abdolmohamad Rostami3  Zoe Fonseca-Kelly3  Andrew Young2  Kate O’Brien1  Denise C Fitzgerald2  | |
[1] Clinical Neurology Research Group, Division of Clinical Neuroscience, University of Nottingham School of Medicine, C Floor South Block, Queen’s Medical Centre, Nottingham NG7 2UH, UK;Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK;Department of Neurology, Thomas Jefferson University, 909 Walnut Street, 2nd Floor, COB Bldg., Philadelphia PA 19107, USA | |
关键词: Th17; IRF3; Inflammation; EAE; Autoimmune; | |
Others : 1151213 DOI : 10.1186/1742-2094-11-130 |
|
received in 2014-04-03, accepted in 2014-07-08, 发布年份 2014 | |
【 摘 要 】
Background
Experimental autoimmune encephalomyelitis (EAE) is an animal model of autoimmune inflammatory demyelination that is mediated by Th1 and Th17 cells. The transcription factor interferon regulatory factor 3 (IRF3) is activated by pathogen recognition receptors and induces interferon-β production.
Methods
To determine the role of IRF3 in autoimmune inflammation, we immunised wild-type (WT) and irf3−/− mice to induce EAE. Splenocytes from WT and irf3−/− mice were also activated in vitro in Th17-polarising conditions.
Results
Clinical signs of disease were significantly lower in mice lacking IRF3, with reduced Th1 and Th17 cells in the central nervous system. Peripheral T-cell responses were also diminished, including impaired proliferation and Th17 development in irf3−/− mice. Myelin-reactive CD4+ cells lacking IRF3 completely failed to transfer EAE in Th17-polarised models as did WT cells transferred into irf3−/− recipients. Furthermore, IRF3 deficiency in non-CD4+ cells conferred impairment of Th17 development in antigen-activated cultures.
Conclusion
These data show that IRF3 plays a crucial role in development of Th17 responses and EAE and warrants investigation in human multiple sclerosis.
【 授权许可】
2014 Fitzgerald et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150406043600640.pdf | 673KB | download | |
Figure 4. | 68KB | Image | download |
Figure 3. | 58KB | Image | download |
Figure 2. | 102KB | Image | download |
Figure 1. | 39KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Sospedra M, Martin R: Immunology of multiple sclerosis. Annu Rev Immunol 2005, 23:683-747.
- [2]Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM: IL-12– and IL-23–modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 2008, 205:1535-1541.
- [3]Bettelli E, Oukka M, Kuchroo VK: TH-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007, 8:345-350.
- [4]Yang Y, Weiner J, Liu Y, Smith AJ, Huss DJ, Winger R, Peng H, Cravens PD, Racke MK, Lovett-Racke AE: T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. J Exp Med 2009, 206:1549-1564.
- [5]Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T: TICAM-1, an adaptor molecule that participates in Toll-like receptor 3–mediated interferon-β induction. Nat Immunol 2003, 4:161-167.
- [6]Tarassishin L, Bauman A, Suh HS, Lee SC: Anti-viral and anti-inflammatory mechanisms of the innate immune transcription factor interferon regulatory factor 3: relevance to human CNS diseases. J Neuroimmune Pharmacol 2013, 8:132-144.
- [7]Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T: The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004, 5:730-737.
- [8]Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, Nakaya T, Katsuki M, Noguchi S, Tanaka N, Taniguchi T: Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 2000, 13:539-548.
- [9]Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S: Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 2003, 301:640-643.
- [10]Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J: Triggering the interferon antiviral response through an IKK-related pathway. Science 2003, 300:1148-1151.
- [11]Tada Y, Ho A, Matsuyama T, Mak TW: Reduced incidence and severity of antigen-induced autoimmune diseases in mice lacking interferon regulatory factor-1. J Exp Med 1997, 185:231-238.
- [12]Huber M, Heink S, Pagenstecher A, Reinhard K, Ritter J, Visekruna A, Guralnik A, Bollig N, Jeltsch K, Heinemann C, Wittmann E, Buch T, Prazeres da Costa O, Brüstle A, Brenner D, Mak TW, Mittrücker HW, Tackenberg B, Kamradt T, Lohoff M: IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J Clin Invest 2013, 123:247-260.
- [13]Tzima S, Victoratos P, Kranidioti K, Alexiou M, Kollias G: Myeloid heme oxygenase-1 regulates innate immunity and autoimmunity by modulating IFN-β production. J Exp Med 2009, 206:1167-1179.
- [14]Downer EJ, Clifford E, Gran B, Nel HJ, Fallon PG, Moynagh PN: Identification of the synthetic cannabinoid R+WIN55,212-2 as a novel regulator of IFN regulatory factor 3 activation and IFN-β expression: relevance to therapeutic effects in models of multiple sclerosis. J Biol Chem 2011, 286:10316-10328.
- [15]Guo B, Chang EY, Cheng G: The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 2008, 118:1680-1690.
- [16]Prinz M, Schmidt H, Mildner A, Knobeloch KP, Hanisch UK, Raasch J, Merkler D, Detje C, Gutcher I, Mages J, Lang R, Martin R, Gold R, Becher B, Brück W, Kalinke U: Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 2008, 28:675-686.
- [17]Teige I, Treschow A, Teige A, Mattsson R, Navikas V, Leanderson T, Holmdahl R, Issazadeh-Navikas S: IFN-β gene deletion leads to augmented and chronic demyelinating experimental autoimmune encephalomyelitis. J Immunol 2003, 170:4776-4784.
- [18]Fitzgerald DC, Ciric B, Touil T, Harle H, Grammatikopolou J, Das Sarma J, Gran B, Zhang GX, Rostami A: Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis. J Immunol 2007, 179:3268-3275.
- [19]Gran B, Zhang GX, Yu S, Li J, Chen XH, Ventura ES, Kamoun M, Rostami A: IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 2002, 169:7104-7110.
- [20]Touil T, Fitzgerald D, Zhang GX, Rostami A, Gran B: Cutting edge: TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-β. J Immunol 2006, 177:7505-7509.
- [21]Axtell RC, de Jong BA, Boniface K, van der Voort LF, Bhat R, De Sarno P, Naves R, Han M, Zhong F, Castellanos JG, Mair R, Christakos A, Kolkowitz I, Katz L, Killestein J, Polman CH, de Waal Malefyt R, Steinman L, Raman C: T helper type 1 and 17 cells determine efficacy of interferon-β in multiple sclerosis and experimental encephalomyelitis. Nat Med 2010, 16:406-412.
- [22]Al-Salleeh F, Petro TM: Promoter analysis reveals critical roles for SMAD-3 and ATF-2 in expression of IL-23 p19 in macrophages. J Immunol 2008, 181:4523-4533.
- [23]Smith S, Gabhann JN, Higgs R, Stacey K, Wahren-Herlenius M, Espinosa A, Totaro MG, Sica A, Ball E, Bell A, Johnston J, Browne P, O’Neill L, Kearns G, Jefferies CA: Enhanced interferon regulatory factor 3 binding to the interleukin-23p19 promoter correlates with enhanced interleukin-23 expression in systemic lupus erythematosus. Arthritis Rheum 2012, 64:1601-1609.
- [24]Ma J, Wang J, Wan J, Charboneau R, Chang Y, Barke RA, Roy S: Morphine disrupts interleukin-23 (IL-23)/IL-17-mediated pulmonary mucosal host defense against Streptococcus pneumoniae infection. Infect Immun 2010, 78:830-837.
- [25]Negishi H, Yanai H, Nakajima A, Koshiba R, Atarashi K, Matsuda A, Matsuki K, Miki S, Doi T, Aderem A, Nishio J, Smale ST, Honda K, Taniguchi T: Cross-interference of RLR and TLR signaling pathways modulates antibacterial T cell responses. Nat Immunol 2012, 13:659-666.