Journal of Neuroinflammation | |
STAT4 controls GM-CSF production by both Th1 and Th17 cells during EAE | |
Laurie E. Harrington1  Etty Benveniste1  Susan Nozell1  Rajani Rajbhandari1  Ian L. McWilliams1  | |
[1] Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 845 19th Street South, BBRB 471, Birmingham 35294, AL, USA | |
关键词: GM-CSF; Th1; Th17; MS; EAE; STAT4; | |
Others : 1221940 DOI : 10.1186/s12974-015-0351-3 |
|
received in 2015-04-09, accepted in 2015-06-19, 发布年份 2015 | |
【 摘 要 】
Background
In experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, mice genetically deficient in the transcription factor signal transducer and activator of transcription 4 (STAT4) are resistant to disease. In contrast, deletion or inhibition of the Th1-associated cytokines IL-12 or IFNγ which act upstream and downstream of STAT4, respectively, does not ameliorate disease. These discordant findings imply that STAT4 may act in a non-canonical role during EAE. Recently, STAT4 has been shown to regulate GM-CSF production by CD4 T cells and this cytokine is necessary for the induction of EAE. However, it is not known if STAT4 controls GM-CSF production by both Th1 and Th17 effector CD4 T cells.
Methods
This study utilized the MOG 35–55peptide immunization model of EAE. Intracellular cytokine staining and novel mixed bone marrow chimeric mice were used to study the CD4 T cell-intrinsic role of STAT4 during disease. STAT4 chromatin-immunoprecipitation (ChIP-PCR) experiments were performed to show STAT4 directly interacts with the Csf2 gene loci.
Results
Herein, we demonstrate that STAT4 controls CD4 T cell-intrinsic GM-CSF production by both Th1 and Th17 CD4 T cells during EAE as well as in vitro. Importantly, we show that STAT4 interacts with the Csf2 locus in MOG 35–55 -activated effector CD4 T cells demonstrating direct modulation of GM-CSF.
Conclusions
Overall, these studies illustrate a previously unrecognized role of STAT4 to regulate GM-CSF production by not only Th1 cells, but also Th17 effector CD4 T cell subsets during EAE pathogenesis. Critically, these data highlight for the first time that STAT4 is able to modulate the effector profile of Th17 CD4 T cell subsets, which redefines our current understanding of STAT4 as a Th1-centric factor.
【 授权许可】
2015 McWilliams et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150804112246741.pdf | 1710KB | download | |
Fig. 5. | 90KB | Image | download |
Fig. 4. | 69KB | Image | download |
Fig. 3. | 70KB | Image | download |
Fig. 2. | 81KB | Image | download |
Fig. 1. | 44KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
【 参考文献 】
- [1]Sospedra M, Martin R: Immunology of multiple sclerosis. Annu Rev Immunol 2005, 23:683-747.
- [2]Arnason BG: Immunologic therapy of multiple sclerosis. Annu Rev Med 1999, 50:291-302.
- [3]Pierson E, Simmons SB, Castelli L, Goverman JM: Mechanisms regulating regional localization of inflammation during CNS autoimmunity. Immunol Rev 2012, 248(1):205-15.
- [4]Steinman L: A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 2007, 13(2):139-45.
- [5]Goverman J: Autoimmune T, cell responses in the central nervous system. Nat Rev Immunol 2009, 9(6):393-407.
- [6]Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, Cotsapas C, et al.: Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 2013, 45(11):1353-60.
- [7]Good SR, Thieu VT, Mathur AN, Yu Q, Stritesky GL, Yeh N, et al.: Temporal induction pattern of STAT4 target genes defines potential for Th1 lineage-specific programming. J Immunol 2009, 183(6):3839-47.
- [8]Trinchieri G: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003, 3(2):133-46.
- [9]Zhang GX, Gran B, Yu S, Li J, Siglienti I, Chen X, et al.: Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol 2003, 170(4):2153-60.
- [10]Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al.: Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003, 421(6924):744-8.
- [11]Gran B, Zhang GX, Yu S, Li J, Chen XH, Ventura ES, et al.: IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 2002, 169(12):7104-10.
- [12]Chitnis T, Najafian N, Benou C, Salama AD, Grusby MJ, Sayegh MH, et al.: Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis. J Clin Invest 2001, 108(5):739-47.
- [13]Bright JJ, Du C, Sriram S: Tyrphostin B42 inhibits IL-12-induced tyrosine phosphorylation and activation of Janus kinase-2 and prevents experimental allergic encephalomyelitis. J Immunol 1999, 162(10):6255-62.
- [14]Mo C, Chearwae W, O'Malley JT, Adams SM, Kanakasabai S, Walline CC, et al.: Stat4 isoforms differentially regulate inflammation and demyelination in experimental allergic encephalomyelitis. J Immunol 2008, 181(8):5681-90.
- [15]Lovett-Racke AE, Yang Y, Racke MK: Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis? Biochim Biophys Acta 2011, 1812(2):246-51.
- [16]Wei L, Vahedi G, Sun HW, Watford WT, Takatori H, Ramos HL, et al.: Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. Immunity 2010, 32(6):840-51.
- [17]Vahedi G, Takahashi H, Nakayamada S, Sun HW, Sartorelli V, Kanno Y, et al.: STATs shape the active enhancer landscape of T cell populations. Cell 2012, 151(5):981-93.
- [18]Duhen R, Glatigny S, Arbelaez CA, Blair TC, Oukka M, Bettelli E: Cutting edge: the pathogenicity of IFN-gamma-producing Th17 cells is independent of T-bet. J Immunol 2013, 190(9):4478-82.
- [19]Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, et al.: Late developmental plasticity in the T helper 17 lineage. Immunity 2009, 30(1):92-107.
- [20]Mukasa R, Balasubramani A, Lee YK, Whitley SK, Weaver BT, Shibata Y, et al.: Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 2010, 32(5):616-27.
- [21]Kroenke MA, Chensue SW, Segal BM: EAE mediated by a non-IFN-gamma/non-IL-17 pathway. Eur J Immunol 2010, 40(8):2340-8.
- [22]Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, et al.: RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 2011, 12(6):560-7.
- [23]El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, et al.: The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 2011, 12(6):568-75.
- [24]Hamilton JA: Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 2008, 8(7):533-44.
- [25]Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D, Dittel BN: GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol 2007, 178(1):39-48.
- [26]Pham D, Yu Q, Walline CC, Muthukrishnan R, Blum JS, Kaplan MH: Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation. J Immunol 2013, 191(2):902-11.
- [27]O'Malley JT, Eri RD, Stritesky GL, Mathur AN, Chang HC, Hogenesch H, et al.: STAT4 isoforms differentially regulate Th1 cytokine production and the severity of inflammatory bowel disease. J Immunol 2008, 181(7):5062-70.
- [28]Kaplan MH, Sun YL, Hoey T, Grusby MJ: Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 1996, 382(6587):174-7.
- [29]Harrington LE, Janowski KM, Oliver JR, Zajac AJ, Weaver CT: Memory CD4 T cells emerge from effector T-cell progenitors. Nature 2008, 452(7185):356-60.
- [30]Yi JS, Du M, Zajac AJ: A vital role for interleukin-21 in the control of a chronic viral infection. Science 2009, 324(5934):1572-6.
- [31]Yeh WI, McWilliams IL, Harrington LE: Autoreactive Tbet-positive CD4 T cells develop independent of classic Th1 cytokine signaling during experimental autoimmune encephalomyelitis. J Immunol 2011, 187(10):4998-5006.
- [32]Nozell S, Laver T, Moseley D, Nowoslawski L, De Vos M, Atkinson GP, et al.: The ING4 tumor suppressor attenuates NF-kappaB activity at the promoters of target genes. Mol Cell Biol 2008, 28(21):6632-45.
- [33]Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al.: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005, 6(11):1123-32.
- [34]Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM: IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 2008, 205(7):1535-41.
- [35]McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, et al.: The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 2009, 10(3):314-24.
- [36]de Paus RA, van de Wetering D, van Dissel JT, van de Vosse E: IL-23 and IL-12 responses in activated human T cells retrovirally transduced with IL-23 receptor variants. Mol Immunol 2008, 45(15):3889-95.
- [37]Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al.: Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000, 13(5):715-25.
- [38]Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, et al.: Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 2010, 467(7318):967-71.
- [39]Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, et al.: Induction and molecular signature of pathogenic TH17 cells. Nat Immunol 2012, 13(10):991-9.
- [40]Noster R, Riedel R, Mashreghi MF, Radbruch H, Harms L, Haftmann C, et al.: IL-17 and GM-CSF expression are antagonistically regulated by human T helper cells. Sci Transl Med 2014, 6(241):241ra80.
- [41]Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, et al.: Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 2011, 12(3):255-63.
- [42]Yeh WI, McWilliams IL, Harrington LE: IFNgamma inhibits Th17 differentiation and function via Tbet-dependent and Tbet-independent mechanisms. J Neuroimmunol 2014, 267(1-2):20-7.
- [43]Lazarevic V, Chen X, Shim JH, Hwang ES, Jang E, Bolm AN, et al.: T-bet represses T(H)17 differentiation by preventing Runx1-mediated activation of the gene encoding RORgammat. Nat Immunol 2011, 12(1):96-104.
- [44]Kaplan MH, Wurster AL, Grusby MJ: A signal transducer and activator of transcription (Stat)4-independent pathway for the development of T helper type 1 cells. J Exp Med 1998, 188(6):1191-6.
- [45]McGeachy MJ: GM-CSF: the secret weapon in the T(H)17 arsenal. Nat Immunol 2011, 12(6):521-2.
- [46]Becher B, Segal BM: T(H)17 cytokines in autoimmune neuro-inflammation. Curr Opin Immunol 2011, 23(6):707-12.
- [47]Sheng W, Yang F, Zhou Y, Yang H, Low PY, Kemeny DM, et al.: STAT5 programs a distinct subset of GM-CSF-producing T helper cells that is essential for autoimmune neuroinflammation. Cell Res 2014, 24(12):1387-402.