期刊论文详细信息
Journal of Neuroinflammation
STAT4 controls GM-CSF production by both Th1 and Th17 cells during EAE
Laurie E. Harrington1  Etty Benveniste1  Susan Nozell1  Rajani Rajbhandari1  Ian L. McWilliams1 
[1] Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 845 19th Street South, BBRB 471, Birmingham 35294, AL, USA
关键词: GM-CSF;    Th1;    Th17;    MS;    EAE;    STAT4;   
Others  :  1221940
DOI  :  10.1186/s12974-015-0351-3
 received in 2015-04-09, accepted in 2015-06-19,  发布年份 2015
PDF
【 摘 要 】

Background

In experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, mice genetically deficient in the transcription factor signal transducer and activator of transcription 4 (STAT4) are resistant to disease. In contrast, deletion or inhibition of the Th1-associated cytokines IL-12 or IFNγ which act upstream and downstream of STAT4, respectively, does not ameliorate disease. These discordant findings imply that STAT4 may act in a non-canonical role during EAE. Recently, STAT4 has been shown to regulate GM-CSF production by CD4 T cells and this cytokine is necessary for the induction of EAE. However, it is not known if STAT4 controls GM-CSF production by both Th1 and Th17 effector CD4 T cells.

Methods

This study utilized the MOG 35–55peptide immunization model of EAE. Intracellular cytokine staining and novel mixed bone marrow chimeric mice were used to study the CD4 T cell-intrinsic role of STAT4 during disease. STAT4 chromatin-immunoprecipitation (ChIP-PCR) experiments were performed to show STAT4 directly interacts with the Csf2 gene loci.

Results

Herein, we demonstrate that STAT4 controls CD4 T cell-intrinsic GM-CSF production by both Th1 and Th17 CD4 T cells during EAE as well as in vitro. Importantly, we show that STAT4 interacts with the Csf2 locus in MOG 35–55 -activated effector CD4 T cells demonstrating direct modulation of GM-CSF.

Conclusions

Overall, these studies illustrate a previously unrecognized role of STAT4 to regulate GM-CSF production by not only Th1 cells, but also Th17 effector CD4 T cell subsets during EAE pathogenesis. Critically, these data highlight for the first time that STAT4 is able to modulate the effector profile of Th17 CD4 T cell subsets, which redefines our current understanding of STAT4 as a Th1-centric factor.

【 授权许可】

   
2015 McWilliams et al.

【 预 览 】
附件列表
Files Size Format View
20150804112246741.pdf 1710KB PDF download
Fig. 5. 90KB Image download
Fig. 4. 69KB Image download
Fig. 3. 70KB Image download
Fig. 2. 81KB Image download
Fig. 1. 44KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Sospedra M, Martin R: Immunology of multiple sclerosis. Annu Rev Immunol 2005, 23:683-747.
  • [2]Arnason BG: Immunologic therapy of multiple sclerosis. Annu Rev Med 1999, 50:291-302.
  • [3]Pierson E, Simmons SB, Castelli L, Goverman JM: Mechanisms regulating regional localization of inflammation during CNS autoimmunity. Immunol Rev 2012, 248(1):205-15.
  • [4]Steinman L: A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 2007, 13(2):139-45.
  • [5]Goverman J: Autoimmune T, cell responses in the central nervous system. Nat Rev Immunol 2009, 9(6):393-407.
  • [6]Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, Cotsapas C, et al.: Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 2013, 45(11):1353-60.
  • [7]Good SR, Thieu VT, Mathur AN, Yu Q, Stritesky GL, Yeh N, et al.: Temporal induction pattern of STAT4 target genes defines potential for Th1 lineage-specific programming. J Immunol 2009, 183(6):3839-47.
  • [8]Trinchieri G: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003, 3(2):133-46.
  • [9]Zhang GX, Gran B, Yu S, Li J, Siglienti I, Chen X, et al.: Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol 2003, 170(4):2153-60.
  • [10]Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al.: Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003, 421(6924):744-8.
  • [11]Gran B, Zhang GX, Yu S, Li J, Chen XH, Ventura ES, et al.: IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 2002, 169(12):7104-10.
  • [12]Chitnis T, Najafian N, Benou C, Salama AD, Grusby MJ, Sayegh MH, et al.: Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis. J Clin Invest 2001, 108(5):739-47.
  • [13]Bright JJ, Du C, Sriram S: Tyrphostin B42 inhibits IL-12-induced tyrosine phosphorylation and activation of Janus kinase-2 and prevents experimental allergic encephalomyelitis. J Immunol 1999, 162(10):6255-62.
  • [14]Mo C, Chearwae W, O'Malley JT, Adams SM, Kanakasabai S, Walline CC, et al.: Stat4 isoforms differentially regulate inflammation and demyelination in experimental allergic encephalomyelitis. J Immunol 2008, 181(8):5681-90.
  • [15]Lovett-Racke AE, Yang Y, Racke MK: Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis? Biochim Biophys Acta 2011, 1812(2):246-51.
  • [16]Wei L, Vahedi G, Sun HW, Watford WT, Takatori H, Ramos HL, et al.: Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. Immunity 2010, 32(6):840-51.
  • [17]Vahedi G, Takahashi H, Nakayamada S, Sun HW, Sartorelli V, Kanno Y, et al.: STATs shape the active enhancer landscape of T cell populations. Cell 2012, 151(5):981-93.
  • [18]Duhen R, Glatigny S, Arbelaez CA, Blair TC, Oukka M, Bettelli E: Cutting edge: the pathogenicity of IFN-gamma-producing Th17 cells is independent of T-bet. J Immunol 2013, 190(9):4478-82.
  • [19]Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, et al.: Late developmental plasticity in the T helper 17 lineage. Immunity 2009, 30(1):92-107.
  • [20]Mukasa R, Balasubramani A, Lee YK, Whitley SK, Weaver BT, Shibata Y, et al.: Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 2010, 32(5):616-27.
  • [21]Kroenke MA, Chensue SW, Segal BM: EAE mediated by a non-IFN-gamma/non-IL-17 pathway. Eur J Immunol 2010, 40(8):2340-8.
  • [22]Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, et al.: RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 2011, 12(6):560-7.
  • [23]El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, et al.: The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 2011, 12(6):568-75.
  • [24]Hamilton JA: Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 2008, 8(7):533-44.
  • [25]Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D, Dittel BN: GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol 2007, 178(1):39-48.
  • [26]Pham D, Yu Q, Walline CC, Muthukrishnan R, Blum JS, Kaplan MH: Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation. J Immunol 2013, 191(2):902-11.
  • [27]O'Malley JT, Eri RD, Stritesky GL, Mathur AN, Chang HC, Hogenesch H, et al.: STAT4 isoforms differentially regulate Th1 cytokine production and the severity of inflammatory bowel disease. J Immunol 2008, 181(7):5062-70.
  • [28]Kaplan MH, Sun YL, Hoey T, Grusby MJ: Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 1996, 382(6587):174-7.
  • [29]Harrington LE, Janowski KM, Oliver JR, Zajac AJ, Weaver CT: Memory CD4 T cells emerge from effector T-cell progenitors. Nature 2008, 452(7185):356-60.
  • [30]Yi JS, Du M, Zajac AJ: A vital role for interleukin-21 in the control of a chronic viral infection. Science 2009, 324(5934):1572-6.
  • [31]Yeh WI, McWilliams IL, Harrington LE: Autoreactive Tbet-positive CD4 T cells develop independent of classic Th1 cytokine signaling during experimental autoimmune encephalomyelitis. J Immunol 2011, 187(10):4998-5006.
  • [32]Nozell S, Laver T, Moseley D, Nowoslawski L, De Vos M, Atkinson GP, et al.: The ING4 tumor suppressor attenuates NF-kappaB activity at the promoters of target genes. Mol Cell Biol 2008, 28(21):6632-45.
  • [33]Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al.: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005, 6(11):1123-32.
  • [34]Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM: IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 2008, 205(7):1535-41.
  • [35]McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, et al.: The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 2009, 10(3):314-24.
  • [36]de Paus RA, van de Wetering D, van Dissel JT, van de Vosse E: IL-23 and IL-12 responses in activated human T cells retrovirally transduced with IL-23 receptor variants. Mol Immunol 2008, 45(15):3889-95.
  • [37]Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al.: Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000, 13(5):715-25.
  • [38]Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, et al.: Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 2010, 467(7318):967-71.
  • [39]Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, et al.: Induction and molecular signature of pathogenic TH17 cells. Nat Immunol 2012, 13(10):991-9.
  • [40]Noster R, Riedel R, Mashreghi MF, Radbruch H, Harms L, Haftmann C, et al.: IL-17 and GM-CSF expression are antagonistically regulated by human T helper cells. Sci Transl Med 2014, 6(241):241ra80.
  • [41]Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, et al.: Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 2011, 12(3):255-63.
  • [42]Yeh WI, McWilliams IL, Harrington LE: IFNgamma inhibits Th17 differentiation and function via Tbet-dependent and Tbet-independent mechanisms. J Neuroimmunol 2014, 267(1-2):20-7.
  • [43]Lazarevic V, Chen X, Shim JH, Hwang ES, Jang E, Bolm AN, et al.: T-bet represses T(H)17 differentiation by preventing Runx1-mediated activation of the gene encoding RORgammat. Nat Immunol 2011, 12(1):96-104.
  • [44]Kaplan MH, Wurster AL, Grusby MJ: A signal transducer and activator of transcription (Stat)4-independent pathway for the development of T helper type 1 cells. J Exp Med 1998, 188(6):1191-6.
  • [45]McGeachy MJ: GM-CSF: the secret weapon in the T(H)17 arsenal. Nat Immunol 2011, 12(6):521-2.
  • [46]Becher B, Segal BM: T(H)17 cytokines in autoimmune neuro-inflammation. Curr Opin Immunol 2011, 23(6):707-12.
  • [47]Sheng W, Yang F, Zhou Y, Yang H, Low PY, Kemeny DM, et al.: STAT5 programs a distinct subset of GM-CSF-producing T helper cells that is essential for autoimmune neuroinflammation. Cell Res 2014, 24(12):1387-402.
  文献评价指标  
  下载次数:50次 浏览次数:15次