期刊论文详细信息
Genome Integrity
SIRT1/PARP1 crosstalk: connecting DNA damage and metabolism
Kurt W Kohn1  Mirit I Aladjem1  Augustin Luna2 
[1] Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA;Bioinformatics Program, Boston University, Boston, MA 02215, USA
关键词: Circadian rhythms;    DNA damage repair;    Transcriptional regulation;    Post-translational modifications;    Nicotinamide Adenine Dinucleotide (NAD+) competition;    Metabolism;    Poly-(ADP) polymerases;    PARP1;    Sirtuins;    SIRT1;   
Others  :  814596
DOI  :  10.1186/2041-9414-4-6
 received in 2013-08-14, accepted in 2013-12-02,  发布年份 2013
PDF
【 摘 要 】

An intricate network regulates the activities of SIRT1 and PARP1 proteins and continues to be uncovered. Both SIRT1 and PARP1 share a common co-factor nicotinamide adenine dinucleotide (NAD+) and several common substrates, including regulators of DNA damage response and circadian rhythms. We review this complex network using an interactive Molecular Interaction Map (MIM) to explore the interplay between these two proteins. Here we discuss how NAD + competition and post-transcriptional/translational feedback mechanisms create a regulatory network sensitive to environmental cues, such as genotoxic stress and metabolic states, and examine the role of those interactions in DNA repair and ultimately, cell fate decisions.

【 授权许可】

   
2013 Luna et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710041320921.pdf 1113KB PDF download
Figure 6. 59KB Image download
Figure 5. 52KB Image download
Figure 4. 63KB Image download
Figure 3. 115KB Image download
Figure 2. 24KB Image download
Figure 1. 92KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Blander G, Guarente L: The Sir2 family of protein deacetylases. Annu Rev Plant Physiol Plant Mol Biol 2004, 73:417-435.
  • [2]D'Amours D, Desnoyers S, D'Silva I, Poirier GG: Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 1999, 342:249-268.
  • [3]Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG: PARP inhibition: PARP1 and beyond. Nat Rev Cancer 2010, 10:293-301.
  • [4]Villalba JM, de Cabo R, Alcain FJ: A patent review of sirtuin activators: an update. Expert Opin Ther Pat 2012, 22:355-367.
  • [5]Canto C, Sauve AA, Bai P: Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med 2013, 34(6):1168-1201.
  • [6]Luna A, Karac EI, Sunshine M, Chang L, Nussinov R, Aladjem MI, Kohn KW: A formal MIM specification and tools for the common exchange of MIM diagrams: an XML-based format, an API, and a validation method. BMC Bioinformatics 2011, 12:167. BioMed Central Full Text
  • [7]Luna A, Sunshine ML, van Iersel MP, Aladjem MI, Kohn KW: PathVisio-MIM: PathVisio plugin for creating and editing Molecular Interaction Maps (MIMs). Bioinformatics 2011, 27(15):2165-2166.
  • [8]Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Bio Cell 2005, 16(10):4623-4635.
  • [9]North BJ, Marshall BL, Borra MT, Denu JM, Verdin E: The human Sir2 ortholog, SIRT2, is an NAD + -dependent tubulin deacetylase. Mol Cell 2003, 11(2):437-444.
  • [10]Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA: hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001, 107(2):149-159.
  • [11]Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, et al.: SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006, 126(5):941-954.
  • [12]Liszt G, Ford E, Kurtev M, Guarente L: Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 2005, 280(22):21313-21320.
  • [13]Shi T, Wang F, Stieren E, Tong Q: SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005, 280(14):13560-13567.
  • [14]Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E: Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 2008, 102(6):703-710.
  • [15]Saunders LR, Verdin E: Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 2007, 26(37):5489-5504.
  • [16]Tanny JC, Dowd GJ, Huang J, Hilz H, Moazed D: An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 1999, 99(7):735-745.
  • [17]Rahman S, Islam R: Mammalian Sirt1: insights on its biological functions. Cell Commun Signal 2011, 9:11. BioMed Central Full Text
  • [18]Mendoza-Alvarez H, Alvarez-Gonzalez R: Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J Biol Chem 1993, 268:22575-22580.
  • [19]Ame JC, Spenlehauer C, de Murcia G: The PARP superfamily. Bioessays 2004, 26(8):882-893.
  • [20]Hassa PO, Haenni SS, Elser M, Hottiger MO: Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biology R 2006, 70:789-829.
  • [21]Messner S, Altmeyer M, Zhao H, Pozivil A, Roschitzki B, Gehrig P, Rutishauser D, Huang D, Caflisch A, Hottiger MO: PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res 2010, 38(19):6350-6362.
  • [22]Luo X, Kraus WL: On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 2012, 26(5):417-432.
  • [23]Flick F, Lüscher B: Regulation of sirtuin function by posttranslational modifications. Frontiers Pharm 2012, 3:29.
  • [24]Nasrin N, Kaushik VK, Fortier E, Wall D, Pearson KJ, de Cabo R, Bordone L: JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PloS ONE 2009, 4(12):e8414.
  • [25]Salazar C, Brummer A, Alberghina L, Hofer T: Timing control in regulatory networks by multisite protein modifications. Trends Cell Biol 2010, 20(11):634-641.
  • [26]Back JH, Rezvani HR, Zhu Y, Guyonnet-Duperat V, Athar M, Ratner D, Kim AL: Cancer cell survival following DNA damage-mediated premature senescence is regulated by mammalian target of rapamycin (mTOR)-dependent Inhibition of sirtuin 1. J Biol Chem 2011, 286(21):19100-19108.
  • [27]Kang H, Jung JW, Kim MK, Chung JH: CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS ONE 2009, 4(8):e6611.
  • [28]Zschoernig B, Mahlknecht U: Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2. Biochem Biophys Res Commun 2009, 381(3):372-377.
  • [29]Kang H, Suh JY, Jung YS, Jung JW, Kim MK, Chung JH: Peptide switch is essential for Sirt1 deacetylase activity. Mol Cell 2011, 44(2):203-213.
  • [30]Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, Minor W, Scrable H: Phosphorylation regulates SIRT1 function. PloS ONE 2008, 3:e4020.
  • [31]Guo X, Williams JG, Schug TT, Li X: DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem 2010, 285(17):13223-13232.
  • [32]Lee CW, Wong LL, Tse EY, Liu HF, Leong VY, Lee JM, Hardie DG, Ng IO, Ching YP: AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res 2012, 72(17):4394-4404.
  • [33]Liu X, Wang D, Zhao Y, Tu B, Zheng Z, Wang L, Wang H, Gu W, Roeder RG, Zhu WG: Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proc Natl Acad Sci USA 2011, 108(5):1925-1930.
  • [34]Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV, Bhalla K, Bai W: SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol 2007, 9:1253-1262.
  • [35]Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JV, Snowman AM, Law L, Hester LD, Snyder SH: GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol 2010, 12(11):1094-1100.
  • [36]Ruscetti T, Lehnert BE, Halbrook J, Le Trong H, Hoekstra MF, Chen DJ, Peterson SR: Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J Biol Chem 1998, 273(23):14461-14467.
  • [37]Walker JW, Jijon HB, Madsen KL: AMP-activated protein kinase is a positive regulator of poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 2006, 342(1):336-341.
  • [38]Kauppinen TM, Chan WY, Suh SW, Wiggins AK, Huang EJ, Swanson R: Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. Proc Natl Acad Sci USA 2006, 103:7136-7141.
  • [39]Hassa PO, Haenni SS, Buerki C, Meier NI, Lane WS, Owen H, Gersbach M, Imhof R, Hottiger MO: Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. J Biol Chem 2005, 280:40450-40464.
  • [40]Messner S, Schuermann D, Altmeyer M, Kassner I, Schmidt D, Schär P, Müller S, Hottiger MO: Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function. FASEB 2009, 23:3978-3989.
  • [41]Zhang J: Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked? Bioessays 2003, 25:808-814.
  • [42]Pillai JB, Isbatan A, Imai S, Gupta MP: Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD + depletion and reduced Sir2alpha deacetylase activity. J Biol Chem 2005, 280(52):43121-43130.
  • [43]Kolthur Seetharam U, Dantzer F, Mcburney MW, Murcia GD, Sassone-corsi P: Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle 2006, 5(8):873-877.
  • [44]Rajamohan SB, Pillai VB, Gupta M, Sundaresan NR, Birukov KG, Samant S, Hottiger MO, Gupta MP: SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol Cell Biol 2009, 29:4116-4129.
  • [45]Bai P, Canto C, Oudart H, Brunyanszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper RH, et al.: PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 2011, 13(4):461-468.
  • [46]Bai P, Canto C, Brunyanszki A, Huber A, Szanto M, Cen Y, Yamamoto H, Houten SM, Kiss B, Oudart H, et al.: PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab 2011, 13(4):450-460.
  • [47]Pittelli M, Formentini L, Faraco G, Lapucci A, Rapizzi E, Cialdai F, Romano G, Moneti G, Moroni F, Chiarugi A: Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J Biol Chem 2010, 285:34106-34114.
  • [48]Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone Corsi P: Circadian control of the NAD + salvage pathway by CLOCK-SIRT1. Science 2009, 324:654-657.
  • [49]Araki T, Sasaki Y, Milbrandt J: Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004, 305:1010-1013.
  • [50]Zhang T, Berrocal JG, Yao J, Dumond ME, Krishnakumar R, Ruhl DD, Ryu KW, Gamble MJ, Kraus WL: Regulation of poly (ADP-ribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD + synthase. J Biol Chem 2012, 287(15):12405-12416.
  • [51]Zhang H-S, Sang W-W, Wang Y-O, Liu W: Nicotinamide phosphoribosyltransferase/sirtuin 1 pathway is involved in human immunodeficiency virus type 1 Tat-mediated long terminal repeat transactivation. J Cell Biochem 2010, 110:1464-1470.
  • [52]Berger F, Lau C, Ziegler M: Regulation of poly(ADP-ribose) polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1. Proc Natl Acad Sci USA 2007, 104:3765-3770.
  • [53]Zhang T, Berrocal JG, Frizzell KM, Gamble MJ, DuMond ME, Krishnakumar R, Yang T, Sauve AA, Kraus WL: Enzymes in the NAD + salvage pathway regulate SIRT1 activity at target gene promoters. J Biol Chem 2009, 284:20408-20417.
  • [54]Kruszewski M, Szumiel I: Sirtuins (histone deacetylases III) in the cellular response to DNA damage–facts and hypotheses. DNA Repair (Amst) 2005, 4:1306-1313.
  • [55]Harper JW, Elledge SJ: The DNA damage response: ten years after. Mol Cell 2007, 28(5):739-745.
  • [56]Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D: Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004, 16:93-105.
  • [57]Imai S, Armstrong CM, Kaeberlein M, Guarente L: Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403:795-800.
  • [58]Krishnakumar R, Kraus WL: The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 2010, 39(1):8-24.
  • [59]Krishnakumar R, Gamble MJ, Frizzell KM, Berrocal JG, Kininis M, Kraus WL: Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 2008, 319(5864):819-821.
  • [60]Wang J, Chen J: SIRT1 regulates autoacetylation and histone acetyltransferase activity of TIP60. J Biol Chem 2010, 285(15):11458-11464.
  • [61]Peng L, Ling H, Yuan Z, Fang B, Bloom G, Fukasawa K, Koomen J, Chen J, Lane WS, Seto E: SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60. Mol Cell Biol 2012, 32(14):2823-2836.
  • [62]Tang J, Cho NW, Cui G, Manion EM, Shanbhag NM, Botuyan MV, Mer G, Greenberg RA: Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat Struct Mol Biol 2013, 20(3):317-325.
  • [63]Sharma GG, So S, Gupta A, Kumar R, Cayrou C, Avvakumov N, Bhadra U, Pandita RK, Porteus MH, Chen DJ, et al.: MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Mol Cell Biol 2010, 30(14):3582-3595.
  • [64]Hsiao KY, Mizzen CA: Histone H4 deacetylation facilitates 53BP1 DNA damage signaling and double-strand break repair. J Mol Cell Biol 2013, 5(3):157-165.
  • [65]Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park S, Hartlerode A, Stegmuller J, Hafner A, Loerch P, et al.: SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 2008, 135:907-918.
  • [66]Matsushita N, Takami Y, Kimura M, Tachiiri S, Ishiai M, Nakayama T, Takata M: Role of NAD-dependent deacetylases SIRT1 and SIRT2 in radiation and cisplatin-induced cell death in vertebrate cells. Genes Cells 2005, 10(4):321-332.
  • [67]Aguilar Quesada R, Munoz Gamez JA, Martin Oliva D, Peralta A, Valenzuela MT, Matinez Romero R, Quiles Perez R, Menissier De Murcia J, De Murcia G, Ruiz De Almodovar M, et al.: Interaction between ATM and PARP-1 in response to DNA damage and sensitization of ATM deficient cells through PARP inhibition. BMC Mol Biol 2007, 8:29. BioMed Central Full Text
  • [68]Woodhouse BC, Dianova II, Parsons JL, Dianov GL: Poly(ADP-ribose) polymerase-1 modulates DNA repair capacity and prevents formation of DNA double strand breaks. DNA Repair 2008, 7:932-940.
  • [69]de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, et al.: Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 1997, 94(14):7303-7307.
  • [70]Gorospe M, de Cabo R: AsSIRTing the DNA damage response. Trends Cell Biol 2008, 18:77-83.
  • [71]Yuan Z, Seto E: A functional link between SIRT1 deacetylase and NBS1 in DNA damage response. Cell Cycle 2007, 6:2869-2871.
  • [72]Yuan Z, Zhang X, Sengupta N, Lane WS, Seto E: SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell 2007, 27(1):149-162.
  • [73]Abdelmohsen K, Pullmann R Jr, Lal A, Kim HH, Galban S, Yang X, Blethrow JD, Walker M, Shubert J, Gillespie DA, et al.: Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 2007, 25(4):543-557.
  • [74]Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y, Nemoto S, Finkel T, Gu W, Cress WD, et al.: Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 2006, 8:1025-1031.
  • [75]Wong S, Weber JD: Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J 2007, 407(3):451-460.
  • [76]Markham D, Munro S, Soloway J, O'Connor DP, La Thangue NB: DNA-damage-responsive acetylation of pRb regulates binding to E2F-1. EMBO Rep 2006, 7(2):192-198.
  • [77]Yuan J, Minter-Dykhouse K, Lou Z: A c-Myc-SIRT1 feedback loop regulates cell growth and transformation. J Cell Biol 2009, 185:203-211.
  • [78]Menssen A, Hydbring P, Kapelle K, Vervoorts J, Diebold J, Luscher B, Larsson LG, Hermeking H: The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc Natl Acad Sci USA 2012, 109(4):E187-E196.
  • [79]Simbulan-Rosenthal CM, Rosenthal DS, Luo R, Samara R, Espinoza LA, Hassa PO, Hottiger MO, Smulson ME: PARP-1 binds E2F-1 independently of its DNA binding and catalytic domains, and acts as a novel coactivator of E2F-1-mediated transcription during re-entry of quiescent cells into S phase. Oncogene 2003, 22(52):8460-8471.
  • [80]Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye R, Mayo MW: Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004, 23:2369-2380.
  • [81]Levine AJ, Oren M: The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009, 9(10):749-758.
  • [82]Liang X-J, Finkel T, Shen D-W, Yin J-J, Aszalos A, Gottesman MM: SIRT1 contributes in part to cisplatin resistance in cancer cells by altering mitochondrial metabolism. Mol Cancer Res 2008, 6:1499-1506.
  • [83]Brooks CL, Gu W: How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer 2009, 9:123-128.
  • [84]Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W: Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001, 107:137-148.
  • [85]Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS, Huber LJ: Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol 2006, 26(1):28-38.
  • [86]Shang L, Zhou H, Xia Y, Wang H, Gao G, Chen B, Liu Q, Shao C, Gong Y: Serum withdrawal up-regulates human SIRT1 gene expression in a p53-dependent manner. J Cell Mol Med 2009, 13(10):4176-4184.
  • [87]Nemoto S, Fergusson MM, Finkel T: Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004, 306(5704):2105-2108.
  • [88]Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB: Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005, 123(3):437-448.
  • [89]Yamakuchi M, Lowenstein CJ: MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 2009, 8:712-715.
  • [90]Yamakuchi M: MicroRNA Regulation of SIRT1. Frontiers Physiol 2012, 3:68.
  • [91]Zhao W, Kruse J-P, Tang Y, Jung SY, Qin J, Gu W: Negative regulation of the deacetylase SIRT1 by DBC1. Nature 2008, 451:587-590.
  • [92]Yuan J, Luo K, Liu T, Lou Z: Regulation of SIRT1 activity by genotoxic stress. Genes Dev 2012, 26:791.
  • [93]Kim J-E, Chen J, Lou Z: DBC1 is a negative regulator of SIRT1. Nature 2008, 451:583-586.
  • [94]Kim E, Kho J, Kang M, Um S: Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 2007, 28:277-290.
  • [95]Kanai M, Hanashiro K, Kim SH, Hanai S, Boulares AH, Miwa M, Fukasawa K: Inhibition of Crm1-p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation. Nat Cell Biol 2007, 9:1175-1183.
  • [96]Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE: SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2008, 2(3):241-251.
  • [97]Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004, 305:390-392.
  • [98]Iijima K, Muranaka C, Kobayashi J, Sakamoto S, Komatsu K, Matsuura S, Kubota N, Tauchi H: NBS1 regulates a novel apoptotic pathway through Bax activation. DNA Repair 2008, 7:1705-1716.
  • [99]Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P: Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 1997, 185(8):1481-1486.
  • [100]Koh DW, Dawson TM, Dawson VL: Mediation of cell death by poly(ADP-ribose) polymerase-1. Pharmacol Res 2005, 52:5-14.
  • [101]Furukawa A, Tada-Oikawa S, Kawanishi S, Oikawa S: H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD + depletion. Cell Physiol Biochem 2007, 20(1–4):45-54.
  • [102]Wang Y, Kim NS, Haince JF, Kang HC, David KK, Andrabi SA, Poirier GG, Dawson VL, Dawson TM: Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal 2011, 4(167):ra20.
  • [103]Rana S, Mahmood S: Circadian rhythm and its role in malignancy. J Circadian Rhythms 2010, 8:3. BioMed Central Full Text
  • [104]Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P: CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 2007, 450:1086-1090.
  • [105]Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P: The NAD + -dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
  • [106]Doi M, Hirayama J, Sassone-Corsi P: Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006, 125:497-508.
  • [107]Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U: SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
  • [108]Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong H-K, Chong JL, Buhr ED, Lee C, et al.: Circadian clock feedback cycle through NAMPT-mediated NAD + biosynthesis. Science 2009, 324:651-654.
  • [109]Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U: Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 2010, 142:943-953.
  • [110]Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V: SIRT6 promotes DNA repair under stress by activating PARP1. Science 2011, 332:1443-1446.
  • [111]Kim SH, Lu HF, Alano CC: Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture. PLoS ONE 2011, 6(3):e14731.
  • [112]Alano CC, Tran A, Tao R, Ying W, Karliner JS, Swanson RA: Differences among cell types in NAD(+) compartmentalization: a comparison of neurons, astrocytes, and cardiac myocytes. J Neurosci Res 2007, 85(15):3378-3385.
  • [113]Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R: Age related changes in NAD + metabolism oxidative stress and Sirt1 activity in wistar rats. PloS ONE 2011, 6(4):e19194.
  • [114]Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ: Age-associated changes in oxidative stress and NAD(+) metabolism in human tissue. PloS ONE 2012, 7(7):e42357.
  • [115]Chang HC, Guarente L: SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 2013, 153(7):1448-1460.
  文献评价指标  
  下载次数:45次 浏览次数:21次