Epigenetics & Chromatin | |
A transgenerational role of the germline nuclear RNAi pathway in repressing heat stress-induced transcriptional activation in C. elegans | |
Sam Guoping Gu1  Thi Trinh2  Alex Huang2  Esteban Chen2  Natallia Kalinava2  Julie Zhouli Ni2  | |
[1] Nelson Labs A125, 604 Allison Road, Piscataway 08854, NJ, USA;Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway 08854, NJ, USA | |
关键词: RNA-seq; ChIP-seq; Germline; Heterochromatin; Transcriptional silencing; Mortal germline phenotype (Mrt); Retrotransposon silencing; LTR retrotransposon; Nuclear Argonaute protein HRDE-1/WAGO-9; Heat stress; Nuclear RNAi; | |
Others : 1235366 DOI : 10.1186/s13072-016-0052-x |
|
received in 2015-10-13, accepted in 2016-01-05, 发布年份 2016 | |
【 摘 要 】
Background
Environmental stress-induced transgenerational epigenetic effects have been observed in various model organisms and human. The capacity and mechanism of such phenomena are poorly understood. In C. elegans, siRNA mediates transgenerational gene silencing through the germline nuclear RNAi pathway. This pathway is also required to maintain the germline immortality when C. elegans is under heat stress. However, the underlying molecular mechanism is unknown. In this study, we investigated the impact of heat stress on chromatin, transcription, and siRNAs at the whole-genome level, and whether any of the heat-induced effects is transgenerationally heritable in either the wild-type or the germline nuclear RNAi mutant animals.
Results
We performed 12-generation temperature-shift experiments using the wild-type C. elegans and a mutant strain that lacks the germline-specific nuclear Argonaute protein HRDE-1/WAGO-9. By examining the mRNA, small RNA, RNA polymerase II, and H3K9 trimethylation profiles at the whole-genome level, we revealed an epigenetic role of HRDE-1 in repressing heat stress-induced transcriptional activation of over 280 genes. Many of these genes are in or near LTR (long-terminal repeat) retrotransposons. Strikingly, for some of these genes, the heat stress-induced transcriptional activation in the hrde-1 mutant intensifies in the late generations under the heat stress and is heritable for at least two generations after the mutant animals are shifted back to lower temperature. hrde-1 mutation also leads to siRNA expression changes of many genes. This effect on siRNA is dependent on both the temperature and generation.
Conclusions
Our study demonstrated that a large number of the endogenous targets of the germline nuclear RNAi pathway in C. elegans are sensitive to heat-induced transcriptional activation. This effect at certain genomic loci including LTR retrotransposons is transgenerational. Germline nuclear RNAi antagonizes this temperature effect at the transcriptional level and therefore may play a key role in heat stress response in C. elegans.
【 授权许可】
2016 Ni et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20160118032356215.pdf | 5037KB | download | |
Fig.5. | 87KB | Image | download |
Fig.4. | 72KB | Image | download |
Fig.3. | 88KB | Image | download |
Fig.2. | 82KB | Image | download |
Fig.1. | 62KB | Image | download |
【 图 表 】
Fig.1.
Fig.2.
Fig.3.
Fig.4.
Fig.5.
【 参考文献 】
- [1]Fire A. RNA-triggered gene silencing. Trends Genet TIG. 1999; 15(9):358-363.
- [2]Kennerdell JR, Carthew RW. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell. 1998; 95(7):1017-1026.
- [3]Castel SE, Martienssen RA. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet. 2013; 14(2):100-112.
- [4]Wassenegger M. RNA-directed DNA methylation. Plant Mol Biol. 2000; 43(2–3):203-220.
- [5]Herr AJ, Baulcombe DC. RNA silencing pathways in plants. Cold Spring Harb Symp Quant Biol. 2004; 69:363-370.
- [6]Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature. 2009; 457(7228):413-420.
- [7]Grewal SI. RNAi-dependent formation of heterochromatin and its diverse functions. Curr Opin Genet Dev. 2010; 20(2):134-141.
- [8]Guang S, Bochner AF, Burkhart KB, Burton N, Pavelec DM, Kennedy S. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature. 2010; 465(7301):1097-1101.
- [9]Guang S, Bochner AF, Pavelec DM, Burkhart KB, Harding S, Lachowiec J et al.. An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science. 2008; 321(5888):537-541.
- [10]Buckley BA, Burkhart KB, Gu SG, Spracklin G, Kershner A, Fritz H et al.. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature. 2012; 489(7416):447-451.
- [11]Burkhart KB, Guang S, Buckley BA, Wong L, Bochner AF, Kennedy S. A pre-mRNA-associating factor links endogenous siRNAs to chromatin regulation. PLoS Genet. 2011; 7(8):e1002249.
- [12]Gu SG, Pak J, Guang S, Maniar JM, Kennedy S, Fire A. Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nat Genet. 2012; 44(2):157-164.
- [13]Ashe A, Sapetschnig A, Weick EM, Mitchell J, Bagijn MP, Cording AC et al.. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell. 2012; 150(1):88-99.
- [14]Shirayama M, Seth M, Lee HC, Gu W, Ishidate T, Conte D et al.. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell. 2012; 150(1):65-77.
- [15]Yigit E, Batista PJ, Bei Y, Pang KM, Chen CC, Tolia NH et al.. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell. 2006; 127(4):747-757.
- [16]Ni JZ, Chen E, Gu SG. Complex coding of endogenous siRNA, transcriptional silencing and H3K9 methylation on native targets of germline nuclear RNAi in C. elegans. BMC Genom. 2014; 15:1157. BioMed Central Full Text
- [17]Russnak RH, Jones D, Candido EP. Cloning and analysis of cDNA sequences coding for two 16 kilodalton heat shock proteins (hsps) in Caenorhabditis elegans: homology with the small hsps of Drosophila. Nucleic Acids Res. 1983; 11(10):3187-3205.
- [18]Murray P, Hayward SA, Govan GG, Gracey AY, Cossins AR. An explicit test of the phospholipid saturation hypothesis of acquired cold tolerance in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2007; 104(13):5489-5494.
- [19]Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T et al.. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science. 2010; 330(6012):1775-1787.
- [20]Gu SG, Fire A. Partitioning the C. elegans genome by nucleosome modification, occupancy, and positioning. Chromosoma. 2010; 119(1):73-87.
- [21]Ikegami K, Egelhofer TA, Strome S, Lieb JD. Caenorhabditis elegans chromosome arms are anchored to the nuclear membrane via discontinuous association with LEM-2. Genome Biol. 2010; 11(12):R120. BioMed Central Full Text
- [22]Felix MA, Duveau F. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biol. 2012; 10:59. BioMed Central Full Text
- [23]Kiontke KC, Felix MA, Ailion M, Rockman MV, Braendle C, Penigault JB et al.. A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol. 2011; 11:339. BioMed Central Full Text
- [24]Reinke V, Gil IS, Ward S, Kazmer K. Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development. 2004; 131(2):311-323.
- [25]Claycomb JM, Batista PJ, Pang KM, Gu W, Vasale JJ, van Wolfswinkel JC et al.. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell. 2009; 139(1):123-134.
- [26]Kim B, Park K, Rhee K. Heat stress response of male germ cells. Cell Mol Life Sci CMLS. 2013; 70(15):2623-2636.
- [27]David JR, Araripe LO, Chakir M, Legout H, Lemos B, Petavy G et al.. Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations. J Evol Biol. 2005; 18(4):838-846.
- [28]Petrella LN. Natural variants of C. elegans demonstrate defects in both sperm function and oogenesis at elevated temperatures. PLoS One. 2014; 9(11):e112377.
- [29]Prasad A, Croydon-Sugarman MJ, Murray RL, Cutter AD. Temperature-dependent fecundity associates with latitude in Caenorhabditis briggsae. Evol Int J Organic Evol. 2011; 65(1):52-63.
- [30]Strand DJ, McDonald JF. Copia is transcriptionally responsive to environmental stress. Nucleic Acids Res. 1985; 13(12):4401-4410.
- [31]Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Mittelsten Scheid O. How a retrotransposon exploits the plant’s heat stress response for its activation. PLoS Genet. 2014; 10(1):e1004115.
- [32]Capy P, Gasperi G, Biemont C, Bazin C. Stress and transposable elements: co-evolution or useful parasites? Heredity. 2000; 85(Pt 2):101-106.
- [33]Dennis S, Sheth U, Feldman JL, English KA, Priess JRC. C. elegans germ cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotransposon. PLoS Pathog. 2012; 8(3):e1002591.
- [34]Johnson CL, Spence AM. Epigenetic licensing of germline gene expression by maternal RNA in C. elegans. Science. 2011; 333(6047):1311-1314.
- [35]Seth M, Shirayama M, Gu W, Ishidate T, Conte D, Mello CC. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev Cell. 2013; 27(6):656-663.
- [36]Wedeles CJ, Wu MZ, Claycomb JM. Protection of germline gene expression by the C. elegans Argonaute CSR-1. Dev Cell. 2013; 27(6):664-671.
- [37]Wedeles CJ, Wu MZ, Claycomb JM. Silent no more: endogenous small RNA pathways promote gene expression. Worm. 2014; 3:e28641.
- [38]Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974; 77(1):71-94.
- [39]Stiernagle T. Maintenance of C. elegans. In: WormBook (ed) WormBook: the online review of C elegans biology. The C. elegans Research Community, 2006. p. 1–11. doi:10.1895/wormbook.1.101.1
- [40]Gent JI, Schvarzstein M, Villeneuve AM, Gu SG, Jantsch V, Fire AZ et al.. A Caenorhabditis elegans RNA-directed RNA polymerase in sperm development and endogenous RNA interference. Genetics. 2009; 183(4):1297-1314.
- [41]Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3):R25. BioMed Central Full Text
- [42]Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):R106. BioMed Central Full Text