期刊论文详细信息
BMC Genomics
Complex coding of endogenous siRNA, transcriptional silencing and H3K9 methylation on native targets of germline nuclear RNAi in C. elegans
Sam Guoping Gu1  Esteban Chen1  Julie Zhouli Ni1 
[1]Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Nelson Labs A125, 604 Allison Road, Piscataway, NJ 08854, USA
关键词: Pre-mRNA-seq;    ChIP-seq;    Germline;    Retrotransposon silencing;    Argonaute protein;    Heterochromatin;    Transcriptional silencing;    Endo-siRNA;    piRNA;    Nuclear RNAi;   
Others  :  1122580
DOI  :  10.1186/1471-2164-15-1157
 received in 2014-06-26, accepted in 2014-12-10,  发布年份 2014
PDF
【 摘 要 】

Background

Small RNA-guided transcriptional silencing (nuclear RNAi) is fundamental to genome integrity and epigenetic inheritance. Despite recent progress in identifying the capability and genetic requirements for nuclear RNAi in Caenorhabditis elegans, the natural targets and cellular functions of nuclear RNAi remain elusive.

Methods

To resolve this gap, we coordinately examined the genome-wide profiles of transcription, histone H3 lysine 9 methylation (H3K9me) and endogenous siRNAs of a germline nuclear Argonaute (hrde-1/wago-9) mutant and identified regions on which transcription activity is markedly increased and/or H3K9me level is markedly decreased relative to wild type animals.

Results

Our data revealed a distinct set of native targets of germline nuclear RNAi, with the H3K9me response exhibiting both overlapping and non-overlapping distribution with the transcriptional silencing response. Interestingly LTR retrotransposons, but not DNA transposons, are highly enriched in the targets of germline nuclear RNAi. The genomic distribution of the native targets is highly constrained, with >99% of the identified targets present in five autosomes but not in the sex chromosome. By contrast, HRDE-1-associated small RNAs correspond to all chromosomes. In addition, we found that the piRNA pathway is not required for germline nuclear RNAi activity on native targets.

Conclusion

Germline nuclear RNAi in C. elegans is required to silence retrotransposons but not DNA transposon. Transcriptional silencing and H3K9me can occur independently of each other on the native targets of nuclear RNAi in C. elegans. Our results rule out a simple model in which nuclear Argonaute protein-associated-small RNAs are sufficient to trigger germline nuclear RNAi responses. In addition, the piRNA pathway and germline nuclear RNAi are specialized to target different types of foreign genetic elements for genome surveillance in C. elegans.

【 授权许可】

   
2014 Ni et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150214022807871.pdf 1507KB PDF download
Figure 6. 136KB Image download
Figure 5. 65KB Image download
Figure 4. 134KB Image download
Figure 3. 117KB Image download
20150330221731374.pdf 1359KB PDF download
Figure 1. 100KB Image download
【 图 表 】

Figure 1.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391(6669):806-811.
  • [2]Kennerdell JR, Carthew RW: Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 1998, 95(7):1017-1026.
  • [3]Bernstein E, Caudy AA, Hammond SM, Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409(6818):363-366.
  • [4]Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ: Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 2001, 293(5532):1146-1150.
  • [5]Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA: Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 1999, 13(24):3191-3197.
  • [6]Hammond SM, Bernstein E, Beach D, Hannon GJ: An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000, 404(6775):293-296.
  • [7]Elbashir SM, Lendeckel W, Tuschl T: RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001, 15(2):188-200.
  • [8]Motamedi MR, Verdel A, Colmenares SU, Gerber SA, Gygi SP, Moazed D: Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 2004, 119(6):789-802.
  • [9]Pak J, Fire A: Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 2007, 315(5809):241-244.
  • [10]Sijen T, Steiner FA, Thijssen KL, Plasterk RH: Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 2007, 315(5809):244-247.
  • [11]Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, Kasschau KD, Chaves DA, Gu W, Vasale JJ, Duan S, Conte D Jr, Luo S, Schroth GP, Carrington JC, Bartel DP, Mello CC: PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell 2008, 31(1):67-78.
  • [12]Claycomb JM, Batista PJ, Pang KM, Gu W, Vasale JJ, van Wolfswinkel JC, Chaves DA, Shirayama M, Mitani S, Ketting RF, Conte D Jr, Mello CC: The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 2009, 139(1):123-134.
  • [13]Saito K, Siomi MC: Small RNA-mediated quiescence of transposable elements in animals. Dev Cell 2009, 19(5):687-697.
  • [14]Gent JI, Lamm AT, Pavelec DM, Maniar JM, Parameswaran P, Tao L, Kennedy S, Fire AZ: Distinct phases of siRNA synthesis in an endogenous RNAi pathway in C. elegans soma. Mol Cell 2010, 37(5):679-689.
  • [15]Maniar JM, Fire AZ: EGO-1, a C. elegans RdRP, modulates gene expression via production of mRNA-templated short antisense RNAs. Curr Biol 2011, 21(6):449-459.
  • [16]Juang BT, Gu C, Starnes L, Palladino F, Goga A, Kennedy S, L’Etoile ND: Endogenous nuclear RNAi mediates behavioral adaptation to odor. Cell 2013, 154(5):1010-1022.
  • [17]Seth M, Shirayama M, Gu W, Ishidate T, Conte D Jr, Mello CC: The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev Cell 2013, 27(6):656-663.
  • [18]Wedeles CJ, Wu MZ, Claycomb JM: Protection of germline gene expression by the C. elegans Argonaute CSR-1. Dev Cell 2013, 27(6):664-671.
  • [19]Billi AC, Fischer SE, Kim JK: Endogenous RNAi pathways in C. elegans. WormBook 2014, 1-49.
  • [20]Wassenegger M: RNA-directed DNA methylation. Plant Mol Biol 2000, 43(2–3):203-220.
  • [21]Herr AJ, Baulcombe DC: RNA silencing pathways in plants. Cold Spring Harb Symp Quant Biol 2004, 69:363-370.
  • [22]Moazed D: Small RNAs in transcriptional gene silencing and genome defence. Nature 2009, 457(7228):413-420.
  • [23]Grewal SI: RNAi-dependent formation of heterochromatin and its diverse functions. Curr Opin Genet Dev 2010, 20(2):134-141.
  • [24]Castel SE, Martienssen RA: RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 2013, 14(2):100-112.
  • [25]Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ: Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007, 128(6):1089-1103.
  • [26]Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC: A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 2007, 315(5818):1587-1590.
  • [27]Sienski G, Donertas D, Brennecke J: Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 2012, 151(5):964-980.
  • [28]Le Thomas A, Rogers AK, Webster A, Marinov GK, Liao SE, Perkins EM, Hur JK, Aravin AA, Toth KF: Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev 2013, 27(4):390-399.
  • [29]Rozhkov NV, Hammell M, Hannon GJ: Multiple roles for Piwi in silencing Drosophila transposons. Genes Dev 2013, 27(4):400-412.
  • [30]Montgomery MK, Xu S, Fire A: RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1998, 95(26):15502-15507.
  • [31]Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001, 410(6824):120-124.
  • [32]Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwein T, Dorn R, Reuter G: Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 2002, 21(5):1121-1131.
  • [33]Peters AH, Kubicek S, Mechtler K, O’Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JH, Jenuwein T: Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 2003, 12(6):1577-1589.
  • [34]Malone CD, Anderson AM, Motl JA, Rexer CH, Chalker DL: Germ line transcripts are processed by a Dicer-like protein that is essential for developmentally programmed genome rearrangements of Tetrahymena thermophila. Mol Cell Biol 2005, 25(20):9151-9164.
  • [35]Guang S, Bochner AF, Pavelec DM, Burkhart KB, Harding S, Lachowiec J, Kennedy S: An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science 2008, 321(5888):537-541.
  • [36]Guang S, Bochner AF, Burkhart KB, Burton N, Pavelec DM, Kennedy S: Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 2010, 465(7301):1097-1101.
  • [37]Burkhart KB, Guang S, Buckley BA, Wong L, Bochner AF, Kennedy S: A pre-mRNA-associating factor links endogenous siRNAs to chromatin regulation. PLoS Genet 2011, 7(8):e1002249.
  • [38]Buckley BA, Burkhart KB, Gu SG, Spracklin G, Kershner A, Fritz H, Kimble J, Fire A, Kennedy S: A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 2012, 489(7416):447-451.
  • [39]Gu SG, Pak J, Guang S, Maniar JM, Kennedy S, Fire A: Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nat Genet 2012, 44(2):157-164.
  • [40]Ashe A, Sapetschnig A, Weick EM, Mitchell J, Bagijn MP, Cording AC, Doebley AL, Goldstein LD, Lehrbach NJ, Le Pen J, Pintacuda G, Sakaguchi A, Sarkies P, Ahmed S, Miska EA: piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 2012, 150(1):88-99.
  • [41]Shirayama M, Seth M, Lee HC, Gu W, Ishidate T, Conte D Jr, Mello CC: piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 2012, 150(1):65-77.
  • [42]Yigit E, Batista PJ, Bei Y, Pang KM, Chen CC, Tolia NH, Joshua-Tor L, Mitani S, Simard MJ, Mello CC: Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 2006, 127(4):747-757.
  • [43]Hirsh D, Oppenheim D, Klass M: Development of the reproductive system of Caenorhabditis elegans. Dev Biol 1976, 49(1):200-219.
  • [44]Gu SG, Fire A: Partitioning the C. elegans genome by nucleosome modification, occupancy, and positioning. Chromosoma 2010, 119(1):73-87.
  • [45]Reinke V, Smith HE, Nance J, Wang J, Van Doren C, Begley R, Jones SJ, Davis EB, Scherer S, Ward S, Kim SK: A global profile of germline gene expression in C. elegans. Mol Cell 2000, 6(3):605-616.
  • [46]Kelly WG, Schaner CE, Dernburg AF, Lee MH, Kim SK, Villeneuve AM, Reinke V: X-chromosome silencing in the germline of C. elegans. Development 2002, 129(2):479-492.
  • [47]Churchman LS, Weissman JS: Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 2011, 469(7330):368-373.
  • [48]Cai H, Luse DS: Transcription initiation by RNA polymerase II in vitro. Properties of preinitiation, initiation, and elongation complexes. J Biol Chem 1987, 262(1):298-304.
  • [49]Wuarin J, Schibler U: Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Mol Cell Biol 1994, 14(11):7219-7225.
  • [50]Bowen NJ, McDonald JF: Genomic analysis of Caenorhabditis elegans reveals ancient families of retroviral-like elements. Genome Res 1999, 9(10):924-935.
  • [51]Ganko EW, Fielman KT, McDonald JF: Evolutionary history of Cer elements and their impact on the C. elegans genome. Genome Res 2001, 11(12):2066-2074.
  • [52]Bessereau JL: Transposons in C. elegans. WormBook 2006, 1-13.
  • [53]Gu W, Shirayama M, Conte D Jr, Vasale J, Batista PJ, Claycomb JM, Moresco JJ, Youngman EM, Keys J, Stoltz MJ, Chen CC, Chaves DA, Duan S, Kasschau KD, Fahlgren N, Yates JR 3rd, Mitani S, Carrington JC, Mello CC: Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol Cell 2009, 36(2):231-244.
  • [54]Fischer SE, Butler MD, Pan Q, Ruvkun G: Trans-splicing in C. elegans generates the negative RNAi regulator ERI-6/7. Nature 2008, 455(7212):491-496.
  • [55]Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP: Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 2006, 127(6):1193-1207.
  • [56]Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ, Sapetschnig A, Buhecha HR, Gilchrist MJ, Howe KL, Stark R, Matthews N, Berezikov E, Ketting RF, Tavaré S, Miska EA: Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol Cell 2008, 31(1):79-90.
  • [57]Bagijn MP, Goldstein LD, Sapetschnig A, Weick EM, Bouasker S, Lehrbach NJ, Simard MJ, Miska EA: Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science 2012, 337(6094):574-578.
  • [58]Lee HC, Gu W, Shirayama M, Youngman E, Conte D Jr, Mello CC: C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell 2012, 150(1):78-87.
  • [59]Luteijn MJ, van Bergeijk P, Kaaij LJ, Almeida MV, Roovers EF, Berezikov E, Ketting RF: Extremely stable Piwi-induced gene silencing in Caenorhabditis elegans. EMBO J 2012, 31(16):3422-3430.
  • [60]Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H: A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 1998, 12(23):3715-3727.
  • [61]Simon M, Sarkies P, Ikegami K, Doebley AL, Goldstein LD, Mitchell J, Sakaguchi A, Miska EA, Ahmed S: Reduced Insulin/IGF-1 signaling restores germ cell immortality to Caenorhabditis elegans Piwi mutants. Cell Rep 2014, 7(3):762-773.
  • [62]Wassenegger M, Heimes S, Riedel L, Sanger HL: RNA-directed de novo methylation of genomic sequences in plants. Cell 1994, 76(3):567-576.
  • [63]Matzke MA, Mette MF, Matzke AJ: Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol Biol 2000, 43(2–3):401-415.
  • [64]Zaratiegui M, Castel SE, Irvine DV, Kloc A, Ren J, Li F, de Castro E, Marin L, Chang AY, Goto D, Cande WZ, Antequera F, Arcangioli B, Martienssen RA: RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II. Nature 2011, 479(7371):135-138.
  • [65]Dumesic PA, Natarajan P, Chen C, Drinnenberg IA, Schiller BJ, Thompson J, Moresco JJ, Yates JR 3rd, Bartel DP, Madhani HD: Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell 2013, 152(5):957-968.
  • [66]Lee NN, Chalamcharla VR, Reyes-Turcu F, Mehta S, Zofall M, Balachandran V, Dhakshnamoorthy J, Taneja N, Yamanaka S, Zhou M, Grewal SI: Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance. Cell 2013, 155(5):1061-1074.
  • [67]Dennis S, Sheth U, Feldman JL, English KA, Priess JR: C. elegans germ cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotransposon. PLoS Pathog 2012, 8(3):e1002591.
  • [68]Brenner S: The genetics of Caenorhabditis elegans. Genetics 1974, 77(1):71-94.
  文献评价指标  
  下载次数:10次 浏览次数:10次