期刊论文详细信息
Epigenetics & Chromatin
Increased production of piRNAs from euchromatic clusters and genes in Anopheles gambiae compared with Drosophila melanogaster
Igor V. Sharakhov2  Chantal Vaury3  Emilie Brasset1  Yi Xing2  Jiyoung Lee2  Romain Pogorelcnik1  Silke Jensen1  Phillip George4 
[1] Centre National de Recherche Scientifique, UMR 6293, Clermont-Ferrand, 63001, France;The PhD Program in Genomics Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg 24061, VA, USA;Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, Clermont-Ferrand, 63001, France;Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg 24061, VA, USA
关键词: Transposable element;    Small RNAs;    Reproduction;    piRNA clusters;    Heterochromatin;    Germline;    Euchromatin;    Drosophila melanogaster;    Development;    Anopheles gambiae;   
Others  :  1234464
DOI  :  10.1186/s13072-015-0041-5
 received in 2015-08-17, accepted in 2015-11-04,  发布年份 2015
PDF
【 摘 要 】

Background

Specific genomic loci, termed Piwi-interacting RNA (piRNA) clusters, manufacture piRNAs that serve as guides for the inactivation of complementary transposable elements (TEs). The piRNA pathway has been accurately detailed in Drosophila melanogaster, while it remains poorly examined in other insects. This pathway is increasingly recognized as critical for germline development and reproduction. Understanding of the piRNA functions in mosquitoes could offer an opportunity for disease vector control by the reduction of their reproductive potential.

Results

To analyze the similarities and differences in this pathway between Drosophila and mosquito, we performed an in-depth analysis of the genomic loci producing piRNAs and their targets in the African malaria vector Anopheles gambiae. We identified 187 piRNA clusters in the An. gambiae genome and 155 piRNA clusters in the D. melanogaster genome. We demonstrate that many more piRNA clusters in the mosquito compared with the fruit fly are uni-directionally transcribed and are located outside pericentromeric heterochromatin. About 11 % of the An. gambiae piRNA population map to gene transcripts. This is a noticeable increase compared with the ~6 % of the piRNA population mapped to genes in D. melanogaster. A subset of the piRNA-enriched genes in An. gambiae has functions related to reproduction and development. At least 24 and 65 % of the mapped piRNAs correspond to genomic TE sequences in An. gambiae and D. melanogaster, respectively. DNA transposons and non-LTR retrotransposons are more abundant in An. gambiae, while LTR retrotransposons are more abundant in D. melanogaster. Yet, piRNAs predominantly target LTR retrotransposons in both species, which may point to a distinct feature of these elements compared to the other classes of TEs concerning their silencing by the piRNA pathway.

Conclusions

Here, we demonstrate that piRNA-producing loci have more ubiquitous distribution in the An. gambiae genome than in the genome of D. melanogaster. Also, protein-coding genes have an increased role in production of piRNAs in the germline of this mosquito. Genes involved in germline and embryonic development of An. gambiae generate a substantial portion of piRNAs, suggesting a role of the piRNA pathway in the epigenetic regulation of the reproductive processes in the African malaria vector.

【 授权许可】

   
2015 George et al.

【 预 览 】
附件列表
Files Size Format View
20151130032113220.pdf 5309KB PDF download
Fig.9. 62KB Image download
Fig.8. 70KB Image download
Fig.7. 23KB Image download
Fig.6. 26KB Image download
Fig.5. 42KB Image download
Fig.4. 69KB Image download
Fig.3. 76KB Image download
Fig.2. 65KB Image download
Fig.1. 20KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Fig.9.

【 参考文献 】
  • [1]Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009; 10(2):94-108.
  • [2]Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R et al.. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007; 128(6):1089-1103.
  • [3]Reiss D, Josse T, Anxolabehere D, Ronsseray S. Aubergine mutations in Drosophila melanogaster impair P cytotype determination by telomeric P elements inserted in heterochromatin. Mol Genet Genomics MGG. 2004; 272(3):336-343.
  • [4]Sarot E, Payen-Groschene G, Bucheton A, Pelisson A. Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics. 2004; 166(3):1313-1321.
  • [5]Savitsky M, Kwon D, Georgiev P, Kalmykova A, Gvozdev V. Telomere elongation is under the control of the RNAi-based mechanism in the Drosophila germline. Genes Dev. 2006; 20(3):345-354.
  • [6]Pane A, Wehr K, Schupbach T. zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev Cell. 2007; 12(6):851-862.
  • [7]Nishimasu H, Ishizu H, Saito K, Fukuhara S, Kamatani MK, Bonnefond L et al.. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature. 2012; 491(7423):284-287.
  • [8]Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T et al.. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science. 2007; 315(5818):1587-1590.
  • [9]Gonzalez-Reyes A, Elliott H, St Johnston D. Oocyte determination and the origin of polarity in Drosophila: the role of the spindle genes. Development. 1997; 124(24):4927-4937.
  • [10]Lin H, Spradling AC. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development. 1997; 124(12):2463-2476.
  • [11]Wang G, Reinke VAC. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr Biol CB. 2008; 18(12):861-867.
  • [12]Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, Kasschau KD et al.. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell. 2008; 31(1):67-78.
  • [13]Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H et al.. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell. 2007; 129(1):69-82.
  • [14]Deng W, Lin H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell. 2002; 2(6):819-830.
  • [15]Cox DN, Chao A, Lin H. Piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development. 2000; 127(3):503-514.
  • [16]Carmell MA, Girard A, van de Kant HJ, Bourc’his D, Bestor TH, de Rooij DG et al.. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell. 2007; 12(4):503-514.
  • [17]Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H, Arai Y et al.. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature. 2014; 509(7502):633-636.
  • [18]Macias V, Coleman J, Bonizzoni M, James AA. piRNA pathway gene expression in the malaria vector mosquito Anopheles stephensi. Insect Mol Biol. 2014; 23(5):579-586.
  • [19]Saito K, Inagaki S, Mituyama T, Kawamura Y, Ono Y, Sakota E et al.. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature. 2009; 461(7268):1296-1299.
  • [20]Robine N, Lau NC, Balla S, Jin Z, Okamura K, Kuramochi-Miyagawa S et al.. A broadly conserved pathway generates 3′UTR-directed primary piRNAs. Curr Biol. 2009; 19(24):2066-2076.
  • [21]Castellano L, Rizzi E, Krell J, Di Cristina M, Galizi R, Mori A et al.. The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs. BMC Genom. 2015; 16:100. BioMed Central Full Text
  • [22]Arensburger P, Hice RH, Wright JA, Craig NL, Atkinson PW. The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs. BMC Genom. 2011; 12:606. BioMed Central Full Text
  • [23]Biryukova I, Ye T. Endogenous siRNAs and piRNAs derived from transposable elements and genes in the malaria vector mosquito Anopheles gambiae. BMC Genom. 2015; 16(1):278. BioMed Central Full Text
  • [24]Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol CB. 2001; 11(13):1017-1027.
  • [25]Li MA, Alls JD, Avancini RM, Koo K, Godt D. The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila. Nat Cell Biol. 2003; 5(11):994-1000.
  • [26]Touret F, Guiguen F, Terzian C. Wolbachia influences the maternal transmission of the gypsy endogenous retrovirus in Drosophila melanogaster. MBio. 2014; 5(5):e01529-14.
  • [27]Shaw WR, Attardo GM, Aksoy S, Catteruccia F. A comparative analysis of reproductive biology of insect vectors of human disease. Curr Opin Insect Sci. 2015; 10:142-148.
  • [28]Hess AM, Prasad AN, Ptitsyn A, Ebel GD, Olson KE, Barbacioru C et al.. Small RNA profiling of Dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense. BMC Microbiol. 2011; 11:45. BioMed Central Full Text
  • [29]Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM. Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog. 2012; 8(1):e1002470.
  • [30]Mayoral JG, Etebari K, Hussain M, Khromykh AA, Asgari S. Wolbachia infection modifies the profile, shuttling and structure of microRNAs in a mosquito cell line. PLoS One. 2014; 9(4):e96107.
  • [31]Goriaux C, Theron E, Brasset E, Vaury C. History of the discovery of a master locus producing piRNAs: the flamenco/COM locus in Drosophila melanogaster. Front Genet. 2014; 5:257.
  • [32]Aravin AA, Hannon GJ, Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science. 2007; 318(5851):761-764.
  • [33]Sharakhova MV, Hammond MP, Lobo NF, Krzywinski J, Unger MF, Hillenmeyer ME et al.. Update of the Anopheles gambiae PEST genome assembly. Genome Biol. 2007; 8(1):R5. BioMed Central Full Text
  • [34]Hoskins RA, Carlson JW, Wan KH, Park S, Mendez I, Galle SE et al.. The Release 6 reference sequence of the Drosophila melanogaster genome. Genome Res. 2015.
  • [35]Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ et al.. Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 2007; 316(5832):1718-1723.
  • [36]Smith CD, Shu S, Mungall CJ, Karpen GH. The Release 5.1 annotation of Drosophila melanogaster heterochromatin. Science. 2007; 316(5831):1586-1591.
  • [37]Sharakhova MV, George P, Brusentsova IV, Leman SC, Bailey JA, Smith CD et al.. Genome mapping and characterization of the Anopheles gambiae heterochromatin. BMC Genom. 2010; 11:459. BioMed Central Full Text
  • [38]Timoshevskiy VA, Kinney NA, deBruyn BS, Mao CH, Tu ZJ, Severson DW et al.. Genomic composition and evolution of Aedes aegypti chromosomes revealed by the analysis of physically mapped supercontigs. BMC Biol. 2014; 12:27. BioMed Central Full Text
  • [39]Sharakhov IV, Sharakhova MV. Heterochromatin, histone modifications, and nuclear architecture in disease vectors. Curr Opin Insect Sci. 2015; 10:110-117.
  • [40]Juneja P, Osei-Poku J, Ho YS, Ariani CV, Palmer WJ, Pain A et al.. Assembly of the genome of the disease vector Aedes aegypti onto a genetic linkage map allows mapping of genes affecting disease transmission. PLoS Negl Trop Dis. 2014; 8(1):e2652.
  • [41]Kawaoka S, Hayashi N, Katsuma S, Kishino H, Kohara Y, Mita K et al.. Bombyx small RNAs: genomic defense system against transposons in the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2008; 38(12):1058-1065.
  • [42]Bao W, Kojima KK, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mobile DNA. 2015; 6:11. BioMed Central Full Text
  • [43]Chambeyron S, Seitz H. Insect small non-coding RNA involved in epigenetic regulations. Curr Opin Insect Sci. 2014; 1:1-9.
  • [44]Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science. 2008; 322(5906):1387-1392.
  • [45]Smit A, Hubley R, Green, P. RepeatMasker Open-4.0. 2013–2015. http://www. repeatmasker.org webcite
  • [46]George P, Sharakhova MV, Sharakhov IV. High-resolution cytogenetic map for the African malaria vector Anopheles gambiae. Insect Mol Biol. 2010; 19(5):675-682.
  • [47]Lawniczak MK, Emrich SJ, Holloway AK, Regier AP, Olson M, White B et al.. Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences. Science. 2010; 330(6003):512-514.
  • [48]Le Thomas A, Tóth KF, Aravin AA. To be or not to be a piRNA: genomic origin and processing of piRNAs. Genome Biol. 2014; 15(1):204. BioMed Central Full Text
  • [49]Zhimulev IF, Belyaeva ES, Makunin IV, Pirrotta V, Volkova EI, Alekseyenko AA et al.. Influence of the SuUR gene on intercalary heterochromatin in Drosophila melanogaster polytene chromosomes. Chromosoma. 2003; 111(6):377-398.
  • [50]Tubio JM, Tojo M, Bassaganyas L, Escaramis G, Sharakhov IV, Sharakhova MV et al.. Evolutionary dynamics of the Ty3/gypsy LTR retrotransposons in the genome of Anopheles gambiae. PLoS One. 2011; 6(1):e16328.
  • [51]Carissimo G, Pondeville E, McFarlane M, Dietrich I, Mitri C, Bischoff E et al.. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota. Proc Natl Acad Sci USA. 2015; 112(2):E176-E185.
  • [52]Surdej P, Riedl A, Jacobs-Lorena M. Regulation of mRNA stability in development. Annu Rev Genet. 1994; 28:263-282.
  • [53]Stark A, Brennecke J, Russell RB, Cohen SM. Identification of Drosophila MicroRNA targets. PLoS Biol. 2003; 1(3):E60.
  • [54]Maccallum RM, Redmond SN, Christophides GK. An expression map for Anopheles gambiae. BMC Genom. 2011; 12:620. BioMed Central Full Text
  • [55]Gan H, Lin X, Zhang Z, Zhang W, Liao S, Wang L et al.. piRNA profiling during specific stages of mouse spermatogenesis. RNA. 2011; 17(7):1191-1203.
  • [56]da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44-57.
  • [57]da Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009; 37(1):1-13.
  • [58]Juhn J, James AA. oskar gene expression in the vector mosquitoes, Anopheles gambiae and Aedes aegypti. Insect Mol Biol. 2006; 15(3):363-372.
  • [59]Cook HA, Koppetsch BS, Wu J, Theurkauf WE. The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell. 2004; 116(6):817-829.
  • [60]Brendza RP, Serbus LR, Duffy JB, Saxton WM. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science. 2000; 289(5487):2120-2122.
  • [61]Giraldo-Calderon GI, Emrich SJ, MacCallum RM, Maslen G, Dialynas E, Topalis P et al.. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res. 2015; 43(Database issue):D707-D713.
  • [62]Marinotti O, Calvo E, Nguyen QK, Dissanayake S, Ribeiro JM, James AA. Genome-wide analysis of gene expression in adult Anopheles gambiae. Insect Mol Biol. 2006; 15(1):1-12.
  • [63]Fernandez-Medina RD, Struchiner CJ, Ribeiro JM. Novel transposable elements from Anopheles gambiae. BMC Genom. 2011; 12:260. BioMed Central Full Text
  • [64]Quesneville H, Nouaud D, Anxolabehere D. P elements and MITE relatives in the whole genome sequence of Anopheles gambiae. BMC Genom. 2006; 7:214. BioMed Central Full Text
  • [65]Kelleher ES, Barbash DA. Analysis of piRNA-mediated silencing of active TEs in Drosophila melanogaster suggests limits on the evolution of host genome defense. Mol Biol Evol. 2013; 30(8):1816-1829.
  • [66]Zanni V, Eymery A, Coiffet M, Zytnicki M, Luyten I, Quesneville H et al.. Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters. Proc Natl Acad Sci USA. 2013; 110(49):19842-19847.
  • [67]Rangan P, Malone CD, Navarro C, Newbold SP, Hayes PS, Sachidanandam R et al.. piRNA production requires heterochromatin formation in Drosophila. Curr Biol. 2011; 21(16):1373-1379.
  • [68]Huang XA, Yin H, Sweeney S, Raha D, Snyder M, Lin H. A major epigenetic programming mechanism guided by piRNAs. Dev Cell. 2013; 24(5):502-516.
  • [69]Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B et al.. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science. 2004; 306(5703):1937-1940.
  • [70]Kawaoka S, Hara K, Shoji K, Kobayashi M, Shimada T, Sugano S et al.. The comprehensive epigenome map of piRNA clusters. Nucleic Acids Res. 2013; 41(3):1581-1590.
  • [71]Klattenhoff C, Xi H, Li C, Lee S, Xu J, Khurana JS et al.. The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell. 2009; 138(6):1137-1149.
  • [72]dos Santos G, Schroeder AJ, Goodman JL, Strelets VB, Crosby MA, Thurmond J et al.. FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Res. 2015; 43(Database issue):D690-D697.
  • [73]Muerdter F, Olovnikov I, Molaro A, Rozhkov NV, Czech B, Gordon A et al.. Production of artificial piRNAs in flies and mice. RNA. 2012; 18(1):42-52.
  • [74]Shpiz S, Ryazansky S, Olovnikov I, Abramov Y, Kalmykova A. Euchromatic transposon insertions trigger production of novel Pi- and endo-siRNAs at the target sites in the drosophila germline. PLoS Genet. 2014; 10(2):e1004138.
  • [75]Mohn F, Handler D, Brennecke J. Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science. 2015; 348(6236):812-817.
  • [76]Han BW, Wang W, Li C, Weng Z, Zamore PD. Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science. 2015; 348(6236):817-821.
  • [77]Wen J, Mohammed J, Bortolamiol-Becet D, Tsai H, Robine N, Westholm JO et al.. Diversity of miRNAs, siRNAs, and piRNAs across 25 Drosophila cell lines. Genome Res. 2014; 24(7):1236-1250.
  • [78]Biedler JK, Hu W, Tae H, Tu Z. Identification of early zygotic genes in the yellow fever mosquito Aedes aegypti and discovery of a motif involved in early zygotic genome activation. PLoS One. 2012; 7(3):e33933.
  • [79]Moshkovich N, Lei EP. HP1 recruitment in the absence of argonaute proteins in Drosophila. PLoS Genet. 2010; 6(3):e1000880.
  • [80]Fagegaltier D, Bouge AL, Berry B, Poisot E, Sismeiro O, Coppee JY et al.. The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. Proc Natl Acad Sci USA. 2009; 106(50):21258-21263.
  • [81]Dufourt J, Pouchin P, Peyret P, Brasset E, Vaury C. NucBase, an easy to use read mapper for small RNAs. Mobile DNA. 2013; 4(1):1. BioMed Central Full Text
  • [82]Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014; 42(Database issue):D68-D73.
  • [83]Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A et al.. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005; 21(16):3439-3440.
  • [84]Guberman JM, Ai J, Arnaiz O, Baran J, Blake A, Baldock R et al.. BioMart Central Portal: an open database network for the biological community. Database J Biol Databases Curation. 2011; 2011:bar041.
  • [85]Haider S, Ballester B, Smedley D, Zhang J, Rice P, Kasprzyk A. BioMart Central Portal–unified access to biological data. Nucleic Acids Res. 2009; 37:W23-W27.
  文献评价指标  
  下载次数:75次 浏览次数:42次