期刊论文详细信息
Journal of Neuroinflammation
β2-adrenergic agonists modulate TNF-α induced astrocytic inflammatory gene expression and brain inflammatory cell populations
Joeri L Aerts2  Jacques De Keyser4  Frauke Demol3  Anneleen Spooren5  Sarah Gerlo1  Guy Laureys3 
[1] VIB Department of Medical Protein Research, Ghent University Department of Biochemistry (Faculty of Medicine and Health Sciences), Albert Baertsoenkaai 3, 9000 Ghent, Belgium;Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;Department of Neurology, University Hospital Brussels, Center for Neurosciences, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium;Department of Neurology, University Medical Center Groningen, RUG, Hanzeplein 1, 9713 GZ Groningen, the Netherlands;Department of Physiology, Laboratory of Eukaryotic Gene Expression and Signal Transduction, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
关键词: NF-κB;    Neuroinflammation;    β2-adrenergic receptors;    Astrocytes;   
Others  :  825672
DOI  :  10.1186/1742-2094-11-21
 received in 2013-10-26, accepted in 2014-01-15,  发布年份 2014
PDF
【 摘 要 】

Background

The NF-κB signaling pathway orchestrates many of the intricate aspects of neuroinflammation. Astrocytic β2-adrenergic receptors have emerged as potential regulators in central nervous system inflammation and are potential targets for pharmacological modulation. The aim of this study was to elucidate the crosstalk between astrocytic β2-adrenergic receptors and the TNF-α induced inflammatory gene program.

Methods

Proinflammatory conditions were generated by the administration of TNF-α. Genes that are susceptible to astrocytic crosstalk between β2-adrenergic receptors (stimulated by clenbuterol) and TNF-α were identified by qPCR-macroarray-based gene expression analysis in a human 1321 N1 astrocytoma cell line. Transcriptional patterns of the identified genes in vitro were validated by RT-PCR on the 1321 N1 cell line as well as on primary rat astrocytes. In vivo expression patterns were examined by intracerebroventricular administration of clenbuterol and/or TNF-α in rats. To examine the impact on the inflammatory cell content of the brain we performed extensive FACS analysis of rat brain immune cells after intracerebroventricular clenbuterol and/or TNF-α administration.

Results

Parallel transcriptional patterns in vivo and in vitro confirmed the relevance of astrocytic β2-adrenergic receptors as modulators of brain inflammatory responses. Importantly, we observed pronounced effects of β2-adrenergic receptor agonists and TNF-α on IL-6, CXCL2, CXCL3, VCAM1, and ICAM1 expression, suggesting a role in inflammatory brain cell homeostasis. Extensive FACS-analysis of inflammatory cell content in the brain demonstrated that clenbuterol/TNF-α co-administration skewed the T cell population towards a double negative phenotype and induced a shift in the myeloid brain cell population towards a neutrophilic predominance.

Conclusions

Our results show that astrocytic β2-adrenergic receptors are potent regulators of astrocytic TNF-α-activated genes in vitro and in vivo, and ultimately modulate the molecular network involved in the homeostasis of inflammatory cells in the central nervous system. Astrocytic β2-adrenergic receptors and their downstream signaling pathway may serve as potential targets to modulate neuroinflammatory responses.

【 授权许可】

   
2014 Laureys et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713071943578.pdf 1315KB PDF download
Figure 3. 89KB Image download
Figure 2. 103KB Image download
Figure 1. 141KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Wyss-Coray T, Mucke L: Inflammation in neurodegenerative disease–a double-edged sword. Neuron 2002, 35:419-432.
  • [2]De Keyser J, Mostert JP, Koch MW: Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 2008, 267:3-16.
  • [3]De Keyser J, Laureys G, Demol F, Wilczak N, Mostert J, Clinckers R: Astrocytes as potential targets to suppress inflammatory demyelinating lesions in multiple sclerosis. Neurochem Int 2010, 57:446-450.
  • [4]Philips T, Robberecht W: Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 2011, 10:253-263.
  • [5]Halliday GM, Stevens CH: Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 2011, 26:6-17.
  • [6]Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, Chui D, Hoi Yu AC: Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 2011, 8:67-80.
  • [7]Laureys G, Clinckers R, Gerlo S, Spooren A, Wilczak N, Kooijman R, Smolders I, Michotte Y, De Keyser J: Astrocytic beta(2)-adrenergic receptors: from physiology to pathology. Prog Neurobiol 2010, 91:189-199.
  • [8]Hayden MS, Ghosh S: NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012, 26:203-234.
  • [9]Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, Green EJ, Bethea JR: Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 2005, 202:145-156.
  • [10]van Loo G, De Lorenzi R, Schmidt H, Huth M, Mildner A, Schmidt-Supprian M, Lassmann H, Prinz MR, Pasparakis M: Inhibition of transcription factor NF-kappaB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat Immunol 2006, 7:954-961.
  • [11]Shore SA, Moore PE: Regulation of beta-adrenergic responses in airway smooth muscle. Respir Physiol Neurobiol 2003, 137:179-195.
  • [12]Ye RD: Beta-adrenergic agonists regulate NF-kappaB activation through multiple mechanisms. Am J Physiol Lung Cell Mol Physiol 2000, 279:L615-L617.
  • [13]Gavrilyuk V, Dello Russo C, Heneka MT, Pelligrino D, Weinberg G, Feinstein DL: Norepinephrine increases I kappa B alpha expression in astrocytes. J Biol Chem 2002, 277:29662-29668.
  • [14]Montgomery SL, Bowers WJ: Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J Neuroimmune Pharmacol 2011, 7:42-59.
  • [15]Spooren A, Kooijman R, Lintermans B, Van Craenenbroeck K, Vermeulen L, Haegeman G, Gerlo S: Cooperation of NFkappaB and CREB to induce synergistic IL-6 expression in astrocytes. Cell Signal 2010, 22:871-881.
  • [16]Goursaud S, Maloteaux JM, Hermans E: Activation of VIP/PACAP type 2 receptor by the peptide histidine isoleucine in astrocytes influences GLAST-mediated glutamate uptake. J Neurochem 2008, 105:1165-1175.
  • [17]Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinates. 2nd edition. San Diego: Academic Press; 1986.
  • [18]Seabrook TJ, Hay JB: Intracerebroventricular infusions of TNF-alpha preferentially recruit blood lymphocytes and induce a perivascular leukocyte infiltrate. J Neuroimmunol 2001, 113:81-88.
  • [19]Toll L, Jimenez L, Waleh N, Jozwiak K, Woo AY, Xiao RP, Bernier M, Wainer IW: {Beta}2-adrenergic receptor agonists inhibit the proliferation of 1321 N1 astrocytoma cells. J Pharmacol Exp Ther 2011, 336:524-532.
  • [20]Beeton C, Chandy KG: Isolation of mononuclear cells from the central nervous system of rats with EAE. J Vis Exp 2007, 10:527.
  • [21]Akilesh S, Shaffer DJ, Roopenian D: Customized molecular phenotyping by quantitative gene expression and pattern recognition analysis. Genome Res 2003, 13:1719-1727.
  • [22]Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA: Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 2012, 485:517-521.
  • [23]Norris JG, Benveniste EN: Interleukin-6 production by astrocytes: induction by the neurotransmitter norepinephrine. J Neuroimmunol 1993, 45:137-145.
  • [24]Spooren A, Kolmus K, Laureys G, Clinckers R, De Keyser J, Haegeman G, Gerlo S: Interleukin-6, a mental cytokine. Brain Res Rev 2011, 67:157-183.
  • [25]Heneka MT, Galea E, Gavriluyk V, Dumitrescu-Ozimek L, Daeschner J, O’Banion MK, Weinberg G, Klockgether T, Feinstein DL: Noradrenergic depletion potentiates beta -amyloid-induced cortical inflammation: implications for Alzheimer’s disease. J Neurosci 2002, 22:2434-2442.
  • [26]McNamee EN, Griffin EW, Ryan KM, Ryan KJ, Heffernan S, Harkin A, Connor TJ: Noradrenaline acting at beta-adrenoceptors induces expression of IL-1beta and its negative regulators IL-1ra and IL-1RII, and drives an overall anti-inflammatory phenotype in rat cortex. Neuropharmacology 2010, 59:37-48.
  • [27]Izeboud CA, Monshouwer M, van Miert AS, Witkamp RF: The beta-adrenoceptor agonist clenbuterol is a potent inhibitor of the LPS-induced production of TNF-alpha and IL-6 in vitro and in vivo. Inflamm Res 1999, 48:497-502.
  • [28]O’Sullivan JB, Ryan KM, Harkin A, Connor TJ: Noradrenaline reuptake inhibitors inhibit expression of chemokines IP-10 and RANTES and cell adhesion molecules VCAM-1 and ICAM-1 in the CNS following a systemic inflammatory challenge. J Neuroimmunol 220:34-42.
  • [29]Luster AD: Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 1998, 338:436-445.
  • [30]Gerlo S, Kooijman R, Beck IM, Kolmus K, Spooren A, Haegeman G: Cyclic AMP: a selective modulator of NF-kappaB action. Cell Mol Life Sci 2011, 68:3823-3841.
  • [31]Sun H, Chung WC, Ryu SH, Ju Z, Tran HT, Kim E, Kurie JM, Koo JS: Cyclic AMP-responsive element binding protein- and nuclear factor-kappaB-regulated CXC chemokine gene expression in lung carcinogenesis. Cancer Prev Res (Phila) 2008, 1:316-328.
  • [32]Feuerstein GZ, Liu T, Barone FC: Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev 1994, 6:341-360.
  • [33]Shrestha B, Zhang B, Purtha WE, Klein RS, Diamond MS: Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system. J Virol 2008, 82:8956-8964.
  • [34]Fiala M, Looney DJ, Stins M, Way DD, Zhang L, Gan X, Chiappelli F, Schweitzer ES, Shapshak P, Weinand M, Graves MC, Witte M, Kim KS: TNF-alpha opens a paracellular route for HIV-1 invasion across the blood–brain barrier. Mol Med 1997, 3:553-564.
  • [35]Sedgwick JD, Riminton DS, Cyster JG, Korner H: Tumor necrosis factor: a master-regulator of leukocyte movement. Immunol Today 2000, 21:110-113.
  • [36]Korner H, Riminton DS, Strickland DH, Lemckert FA, Pollard JD, Sedgwick JD: Critical points of tumor necrosis factor action in central nervous system autoimmune inflammation defined by gene targeting. J Exp Med 1997, 186:1585-1590.
  • [37]Khorooshi R, Babcock AA, Owens T: NF-kappaB-driven STAT2 and CCL2 expression in astrocytes in response to brain injury. J Immunol 2008, 181:7284-7291.
  • [38]Bell MD, Taub DD, Kunkel SJ, Strieter RM, Foley R, Gauldie J, Perry VH: Recombinant human adenovirus with rat MIP-2 gene insertion causes prolonged PMN recruitment to the murine brain. Eur J Neurosci 1996, 8:1803-1811.
  • [39]Zwijnenburg PJ, Polfliet MM, Florquin S, van den Berg TK, Dijkstra CD, van Deventer SJ, Roord JJ, van der Poll T, van Furth AM: CXC-chemokines KC and macrophage inflammatory protein-2 (MIP-2) synergistically induce leukocyte recruitment to the central nervous system in rats. Immunol Lett 2003, 85:1-4.
  • [40]Shaftel SS, Carlson TJ, Olschowka JA, Kyrkanides S, Matousek SB, O’Banion MK: Chronic interleukin-1beta expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration. J Neurosci 2007, 27:9301-9309.
  • [41]Pineau I, Sun L, Bastien D, Lacroix S: Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun 2010, 24:540-553.
  • [42]Abraham VS, Sachs DH, Sykes M: Mechanism of protection from graft-versus-host disease mortality by IL-2. III. Early reductions in donor T cell subsets and expansion of a CD3 + CD4-CD8- cell population. J Immunol 1992, 148:3746-3752.
  • [43]Fischer K, Voelkl S, Heymann J, Przybylski GK, Mondal K, Laumer M, Kunz-Schughart L, Schmidt CA, Andreesen R, Mackensen A: Isolation and characterization of human antigen-specific TCR alpha beta + CD4(-)CD8- double-negative regulatory T cells. Blood 2005, 105:2828-2835.
  • [44]D’Acquisto F, Crompton T: CD3 + CD4-CD8- (double negative) T cells: saviours or villains of the immune response? Biochem Pharmacol 2011, 82:333-340.
  • [45]Juvet SC, Zhang L: Double negative regulatory T cells in transplantation and autoimmunity: recent progress and future directions. J Mol Cell Biol 2012, 4:48-58.
  • [46]Hillhouse EE, Lesage S: A comprehensive review of the phenotype and function of antigen-specific immunoregulatory double negative T cells. J Autoimmun 2013, 40:58-65.
  • [47]Zhang D, Yang W, Degauque N, Tian Y, Mikita A, Zheng XX: New differentiation pathway for double-negative regulatory T cells that regulates the magnitude of immune responses. Blood 2007, 109:4071-4079.
  • [48]Mehal WZ, Crispe IN: TCR ligation on CD8+ T cells creates double-negative cells in vivo. J Immunol 1998, 161:1686-1693.
  • [49]Carlson T, Kroenke M, Rao P, Lane TE, Segal B: The Th17-ELR + CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med 2008, 205:811-823.
  • [50]Holman DW, Klein RS, Ransohoff RM: The blood–brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta 2011, 1812(2):220-230.
  • [51]Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG: The spectrum of neuromyelitis optica. Lancet Neurol 2007, 6:805-815.
  • [52]Easton AS: Neutrophils and stroke – Can neutrophils mitigate disease in the central nervous system? Int Immunopharmacol 2013, 17:1218-1225.
  • [53]Cuartero MI, Ballesteros I, Moraga A, Nombela F, Vivancos J, Hamilton JA, Corbi AL, Lizasoain I, Moro MA: N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARgamma agonist rosiglitazone. Stroke 2013, 44:3498-3508.
  • [54]De Keyser J, Wilczak N, Leta R, Streetland C: Astrocytes in multiple sclerosis lack beta-2 adrenergic receptors. Neurology 1999, 53:1628-1633.
  文献评价指标  
  下载次数:0次 浏览次数:6次