期刊论文详细信息
BMC Neuroscience
Exogenous α-synuclein induces toll-like receptor 4 dependent inflammatory responses in astrocytes
Philipp J. Kahle1  Stephanie S. Weber3  Emmy H. Rannikko2 
[1] German Center for Neurodegenerative Diseases, Tübingen, Germany;Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden;Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Faculty of Medicine, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Str. 27, Tübingen, 72076, Germany
关键词: Astrocytes;    Endocytosis;    NF-κB;    MAP kinases;    Cyclooxygenase;    Nitric oxide synthase;    Cytokines;    Neuroinflammation;    Toll-like receptor TLR4;    Synuclein;   
Others  :  1230650
DOI  :  10.1186/s12868-015-0192-0
 received in 2015-01-14, accepted in 2015-08-13,  发布年份 2015
【 摘 要 】

Background

The pathological hallmarks of Parkinson’s disease are intracellular inclusions composed mainly of misfolded α-synuclein (αSYN). Under physiological conditions αSYN is mostly localized in synapses. In addition, a portion of αSYN is secreted to the extracellular space, where it may be sequestered by neighboring cells and could induce inflammatory responses. The mechanisms of αSYN internalization and signal transduction are not unequivocally clarified. In this work we investigated in primary mouse astrocytes the involvement of toll-like receptor 4 (TLR4) in the induction of inflammatory responses upon exposure to purified human αSYN produced in bacteria.

Results

The mRNA induction of pro-inflammatory cytokines, inducible nitric oxide synthase and cyclooxygenase-2 was significantly reduced in TLR4 knockout astrocytes. The αSYN-mediated activation of c-Jun N-terminal kinases and p38 mitogen-activated protein kinase tended to be diminished, and nuclear translocation of the p65 subunit of nuclear factor κB was abolished in TLR4 knockout astrocytes. In contrast, the uptake of exogenous αSYN was unaffected by TLR4 knockout.

Conclusions

Extracellular αSYN can activate pro-inflammatory TLR4 pathways in astrocytes, whereas αSYN uptake is independent of TLR4.

【 授权许可】

   
2015 Rannikko et al.

附件列表
Files Size Format View
Fig.4. 55KB Image download
Fig.3. 55KB Image download
Fig.2. 87KB Image download
Fig.1. 52KB Image download
Fig.4. 55KB Image download
Fig.3. 55KB Image download
Fig.2. 87KB Image download
Fig.1. 52KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.1.

Fig.2.

Fig.3.

Fig.4.

【 参考文献 】
  • [1]Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH: Mechanisms underlying inflammation in neurodegeneration. Cell. 2010, 140(6):918-934.
  • [2]McGeer PL, Itagaki S, Boyes BE, McGeer EG: Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988, 38(8):1285-1291.
  • [3]Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F: Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience. 1993, 52(1):1-6.
  • [4]Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, et al.: Infiltration of CD4 + lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest. 2009, 119(1):182-192.
  • [5]Hirsch EC, Hunot S: Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009, 8(4):382-397.
  • [6]Poltorak A, He X, Smirnova I, Liu M-Y, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, et al.: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998, 282(5396):2085-2088.
  • [7]Stefanova N, Reindl M, Neumann M, Kahle PJ, Poewe W, Wenning GK: Microglial activation mediates neurodegeneration related to oligodendroglial α-synucleinopathy: implications for multiple system atrophy. Mov Disord 2007, 22(15):2196-2203.
  • [8]Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M: α-Synuclein in Lewy bodies. Nature 1997, 388(6645):839-840.
  • [9]Solano SM, Miller DW, Augood SJ, Young AB, Penney JB Jr: Expression of α-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain: genes associated with familial Parkinson’s disease. Ann Neurol 2000, 47(2):201-210.
  • [10]Braak H, Sastre M, Del Tredici K: Development of α-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol 2007, 114(3):231-241.
  • [11]Terada S, Ishizu H, Yokota O, Tsuchiya K, Nakashima H, Ishihara T, Fujita D, Ueda K, Ikeda K, Kuroda S: Glial involvement in diffuse Lewy body disease. Acta Neuropathol 2003, 105(2):163-169.
  • [12]Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H: NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 2000, 99(1):14-20.
  • [13]Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen JT, Schöls L, Riess O: Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 1998, 18(2):106-108.
  • [14]Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, et al.: Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997, 276(5321):2045-2047.
  • [15]Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, et al.: α-Synuclein locus triplication causes Parkinson’s disease. Science 2003, 302(5646):841.
  • [16]Davidson WS, Jonas A, Clayton DF, George JM: Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 1998, 273(16):9443-9449.
  • [17]Fortin DL, Troyer MD, Nakamura K, Kubo S, Anthony MD, Edwards RH: Lipid rafts mediate the synaptic localization of α-synuclein. J Neurosci 2004, 24(30):6715-6723.
  • [18]Jo E, McLaurin J, Yip CM, St George-Hyslop P, Fraser PE: α-Synuclein membrane interactions and lipid specificity. J Biol Chem 2000, 275(44):34328-34334.
  • [19]Maroteaux L, Campanelli JT, Scheller RH: Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 1988, 8(8):2804-2815.
  • [20]Giasson BI, Murray IVJ, Trojanowski JQ, Lee VM-Y: A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. J Biol Chem 2001, 276(4):2380-2386.
  • [21]Barbour R, Kling K, Anderson JP, Banducci K, Cole T, Diep L, Fox M, Goldstein JM, Soriano F, Seubert P, et al.: Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis 2008, 5(2):55-59.
  • [22]Stefanis L: α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2012, 2(2):a009399.
  • [23]Jang A, Lee H-J, Suk J-E, Jung J-W, Kim K-P, Lee S-J: Non-classical exocytosis of α-synuclein is sensitive to folding states and promoted under stress conditions. J Neurochem 2010, 113(5):1263-1274.
  • [24]Lee H-J, Patel S, Lee S-J: Intravesicular localization and exocytosis of α-synuclein and its aggregates. J Neurosci 2005, 25(25):6016-6024.
  • [25]Marques O, Outeiro TF: Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis 2012, 3:e350.
  • [26]Lee H-J, Suk J-E, Patrick C, Bae E-J, Cho J-H, Rho S, Hwang D, Masliah E, Lee S-J: Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 2010, 285(12):9262-9272.
  • [27]Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, Wenning GK, Stefanova N: Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 2013, 61(3):349-360.
  • [28]Kim C, Ho D-H, Suk J-E, You S, Michael S, Kang J, Joong Lee S, Masliah E, Hwang D, Lee H-J, et al.: Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 2013, 4:1562.
  • [29]Kim C, Cho E-D, Kim H-K, You S, Lee H-J, Hwang D, Lee S-J: β1-integrin-dependent migration of microglia in response to neuron-released α-synuclein. Exp Mol Med 2014, 46:e91.
  • [30]Roodveldt C, Labrador-Garrido A, Gonzalez-Rey E, Lachaud CC, Guilliams T, Fernandez-Montesinos R, Benitez-Rondan A, Robledo G, Hmadcha A, Delgado M, et al.: Preconditioning of microglia by α-synuclein strongly affects the response induced by toll-like receptor (TLR) stimulation. PLoS One 2013, 8(11):e79160.
  • [31]Netea MG, van Deuren M, Kullberg BJ, Cavaillon JM, Van der Meer JW: Does the shape of lipid A determine the interaction of LPS with Toll-like receptors? Trends Immunol 2002, 23(3):135-139.
  • [32]Lee H-J, Suk J-E, Bae E-J, Lee S-J: Clearance and deposition of extracellular α-synuclein aggregates in microglia. Biochem Biophys Res Commun 2008, 372(3):423-428.
  • [33]Lee H-J, Suk J-E, Bae E-J, Lee J-H, Paik SR, Lee SJ: Assembly-dependent endocytosis and clearance of extracellular α-synuclein. Int J Biochem Cell Biol 2008, 40(9):1835-1849.
  • [34]Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T: α-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 2002, 4(2):160-164.
  • [35]Neumann M, Kahle PJ, Giasson BI, Ozmen L, Borroni E, Spooren W, Müller V, Odoy S, Fujiwara H, Hasegawa M, et al.: Misfolded proteinase K-resistant hyperphosphorylated α-synuclein in aged transgenic mice with locomotor deterioration and in human α-synucleinopathies. J Clin Invest 2002, 110(10):1429-1439.
  • [36]Klegeris A, Pelech S, Giasson BI, Maguire J, Zhang H, McGeer EG, McGeer PL: α-Synuclein activates stress signaling protein kinases in THP-1 cells and microglia. Neurobiol Aging 2008, 29(5):739-752.
  • [37]Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ: Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 2008, 29(11):1690-1701.
  • [38]Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhou Y, Hong J-S, Zhang J: Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 2005, 19(6):533-542.
  • [39]Brudek T, Winge K, Agander TK, Pakkenberg B: Screening of Toll-like receptors expression in multiple system atrophy brains. Neurochem Res 2013, 38(6):1252-1259.
  • [40]Ahn KJ, Paik SR, Chung KC, Kim J: Amino acid sequence motifs and mechanistic features of the membrane translocation of α-synuclein. J Neurochem 2006, 97(1):265-279.
  • [41]Park J-Y, Kim KS, Lee S-B, Ryu J-S, Chung KC, Choo Y-K, Jou I, Kim J, Park SM: On the mechanism of internalization of α-synuclein into microglia: roles of ganglioside GM1 and lipid raft. J Neurochem 2009, 110(1):400-411.
  • [42]Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM-Y: Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J Exp Med 2012, 209(5):975-986.
  • [43]Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR, Trojanowski JQ, Lee VM-Y: Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA 2009, 106(47):20051-20056.
  • [44]Emmanouilidou E, Elenis D, Papasilekas T, Stranjalis G, Gerozissis K, Ioannou PC, Vekrellis K: Assessment of α-synuclein secretion in mouse and human brain parenchyma. PLoS One 2011, 6(7):e22225.
  • [45]Kahle PJ, Neumann M, Ozmen L, Müller V, Jacobsen H, Schindzielorz A, Okochi M, Leimer U, van Der Putten H, Probst A, et al.: Subcellular localization of wild-type and Parkinson’s disease-associated mutant α-synuclein in human and transgenic mouse brain. J Neurosci 2000, 20(17):6365-6373.
  • [46]Schell H, Hasegawa T, Neumann M, Kahle PJ: Nuclear and neuritic distribution of serine-129 phosphorylated α-synuclein in transgenic mice. Neuroscience 2009, 160(4):796-804.
  • [47]Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S: Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999, 162(7):3749-3752.
  • [48]Hamprecht B, Löffler F: Primary glial cultures as a model for studying hormone action. Methods Enzymol 1985, 109:341-345.
  文献评价指标  
  下载次数:102次 浏览次数:28次