期刊论文详细信息
Journal for ImmunoTherapy of Cancer
New perspective on targeting the tumor suppressor p53 pathway in the tumor microenvironment to enhance the efficacy of immunotherapy
Yan Cui1  Gang Guo1 
[1]Department of Biochemistry and Molecular Biology, Cancer Immunology, Inflammation & Tolerance Program, Georgia Regents University Cancer Center, Augusta 30912, GA, USA
关键词: Immunotherapy;    Antitumor immunity;    Inflammation;    Immune suppression;    Tumor microenvironment;    p53 inactivation;    Tumor suppressor p53;    Cancer;   
Others  :  1144128
DOI  :  10.1186/s40425-015-0053-5
 received in 2014-08-26, accepted in 2015-02-26,  发布年份 2015
PDF
【 摘 要 】

About 50% of human cancers harbor somatic mutations of the tumor suppressor p53 (p53 or Trp53) gene. Many of those mutations result in the inactivation of the p53 pathway and are often associated with the stabilization and accumulation of mutant p53 proteins. Therefore, increased p53 expression in tumors is frequently used as a surrogate marker for p53 mutation and inactivation. Moreover, this elevated p53 expression also makes it an ideal tumor associated antigen (TAA) for cancer vaccines. Recent advances in our understanding of p53 as a crucial transcription factor reveal that p53 is an important sensor of cellular stress under genotoxic, chemotoxic, pathological, and even normal physiological conditions. Experimental and clinical observations by our laboratory and others have demonstrated that p53 also participates in immune regulation as p53 dysfunction skews host immune responses towards pro-inflammation, which further promotes tumor progression. Furthermore, recent studies using a genetic approach revealed that p53-restoration or re-activation led to tumor regression and clearance, which were at least partially caused by the activation of innate antitumor immunity. Since many of the currently used cancer therapeutics, including radiotherapy and chemotherapy, disrupt tumor growth by inducing DNA damage via genotoxic or chemotoxic stress, which activates the p53 pathway in the tumor microenvironment, we postulate that some of those observed therapeutic benefits might also be partially mediated through their immune stimulatory effects. Here, we briefly review our current understanding of the potential cellular and molecular mechanisms by which p53 participates in immune regulation and, subsequently, extend our discussion to the immunostimulatory potential of existing and new approaches of targeting the p53-pathway to alter the immunological landscape of tumors for maximizing immunotherapy outcome.

【 授权许可】

   
2015 Guo and Cui; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150330090624425.pdf 883KB PDF download
Figure 2. 47KB Image download
Figure 1. 44KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Lane DP, Crawford LV: T antigen is bound to a host protein in SV40-transformed cells. Nature 1979, 278(5701):261-3.
  • [2]Finlay CA, Hinds PW, Levine AJ: The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989, 57(7):1083-93.
  • [3]Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oren M: Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci U S A 1989, 86(22):8763-7.
  • [4]Lane D, Levine A: p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2010, 2(12):a000893.
  • [5]Soussi T: p53 alterations in human cancer: more questions than answers. Oncogene 2007, 26(15):2145-56.
  • [6]Soussi T, Hamroun D, Hjortsberg L, Rubio-Nevado JM, Fournier JL, Beroud C: MUT-TP53 2.0: a novel versatile matrix for statistical analysis of TP53 mutations in human cancer. Hum Mutat 2010, 31(9):1020-5.
  • [7]Vousden KH, Lane DP: p53 in health and disease. Nat Rev 2007, 8(4):275-83.
  • [8]Levine AJ: p53, the cellular gatekeeper for growth and division. Cell 1997, 88(3):323-31.
  • [9]Levine AJ, Oren M: The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009, 9(10):749-58.
  • [10]Shimada H, Takeda A, Arima M, Okazumi S, Matsubara H, Nabeya Y, et al.: Serum p53 antibody is a useful tumor marker in superficial esophageal squamous cell carcinoma. Cancer 2000, 89(8):1677-83.
  • [11]Tang R, Yeh CY, Wang JY, Changchien CR, Chen JS, Hsieh LL: Serum p53 antibody as tumor marker for follow-up of colorectal cancer after curative resection. Ann Surg Oncol 2009, 16(9):2516-23.
  • [12]Tilkin AF, Lubin R, Soussi T, Lazar V, Janin N, Mathieu MC, et al.: Primary proliferative T cell response to wild-type p53 protein in patients with breast cancer. Eur J Immunol 1995, 25(6):1765-9.
  • [13]DeLeo AB, Whiteside TL: Development of multi-epitope vaccines targeting wild-type sequence p53 peptides. Expert Rev Vaccines 2008, 7(7):1031-40.
  • [14]Vermeij R, Leffers N, van der Burg SH, Melief CJ, Daemen T, Nijman HW: Immunological and clinical effects of vaccines targeting p53-overexpressing malignancies. J Biomed Biotechnol 2011, 2011:702146.
  • [15]Chiappori AA, Soliman H, Janssen WE, Antonia SJ, Gabrilovich DI: INGN-225: a dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: observed association between immune response and enhanced chemotherapy effect. Expert Opin Biol Ther 2010, 10(6):983-91.
  • [16]Vousden KH, Prives C: Blinded by the Light: The Growing Complexity of p53. Cell 2009, 137(3):413-31.
  • [17]Levine AJ: Introduction: The Changing Directions of p53 Research. Genes Cancer 2011, 2(4):382-4.
  • [18]Aylon Y, Oren M: New plays in the p53 theater. Curr Opin Genet Dev 2011, 21(1):86-92.
  • [19]Hussain SP, Amstad P, Raja K, Ambs S, Nagashima M, Bennett WP, et al.: Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res 2000, 60(13):3333-7.
  • [20]Schetter AJ, Heegaard NH, Harris CC: Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 2010, 31(1):37-49.
  • [21]Gudkov AV, Gurova KV, Komarova EA: Inflammation and p53: A Tale of Two Stresses. Genes Cancer 2011, 2(4):503-16.
  • [22]Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A: Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009, 30(7):1073-81.
  • [23]Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144(5):646-74.
  • [24]Grivennikov SI, Greten FR, Karin M: Immunity, inflammation, and cancer. Cell 2010, 140(6):883-99.
  • [25]Guo G, Marrero L, Rodriguez P, Del Valle L, Ochoa A, Cui Y: Trp53 inactivation in the tumor microenvironment promotes tumor progression by expanding the immunosuppressive lymphoid-like stromal network. Cancer Res 2013, 73(6):1668-75.
  • [26]Zhang S, Zheng M, Kibe R, Huang Y, Marrero L, Warren S, et al.: Trp53 negatively regulates autoimmunity via the STAT3-Th17 axis. Faseb J 2011, 25(7):2387-98.
  • [27]Menendez D, Shatz M, Resnick MA: Interactions between the tumor suppressor p53 and immune responses. Curr Opin Oncol 2013, 25(1):85-92.
  • [28]Martins CP, Brown-Swigart L, Evan GI: Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 2006, 127(7):1323-34.
  • [29]Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, et al.: Restoration of p53 function leads to tumour regression in vivo. Nature 2007, 445(7128):661-5.
  • [30]Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, et al.: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007, 445(7128):656-60.
  • [31]Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature 2000, 408(6810):307-10.
  • [32]Wade M, Wang YV, Wahl GM: The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 2010, 20(5):299-309.
  • [33]Kruse JP, Gu W: Modes of p53 regulation. Cell 2009, 137(4):609-22.
  • [34]Levine AJ, Hu W, Feng Z: The P53 pathway: what questions remain to be explored? Cell Death Differ 2006, 13(6):1027-36.
  • [35]Green DR, Chipuk JE: p53 and metabolism: Inside the TIGAR. Cell 2006, 126(1):30-2.
  • [36]Stiewe T: The p53 family in differentiation and tumorigenesis. Nat Rev Cancer 2007, 7(3):165-8.
  • [37]Junttila MR, Evan GI: p53–a Jack of all trades but master of none. Nat Rev Cancer 2009, 9(11):821-9.
  • [38]Menendez D, Inga A, Resnick MA: The expanding universe of p53 targets. Nat Rev Cancer 2009, 9(10):724-37.
  • [39]Feng Z, Hu W, Rajagopal G, Levine AJ: The tumor suppressor p53: cancer and aging. Cell cycle (Georgetown, Tex 2008, 7(7):842-7.
  • [40]Vigneron A, Vousden KH: p53, ROS and senescence in the control of aging. Aging 2010, 2(8):471-4.
  • [41]Yi L, Lu C, Hu W, Sun Y, Levine AJ: Multiple Roles of p53-Related Pathways in Somatic Cell Reprogramming and Stem Cell Differentiation. Cancer Res 2012;72:5635–45.
  • [42]Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, et al.: Mutant p53 drives invasion by promoting integrin recycling. Cell 2009, 139(7):1327-41.
  • [43]Rivlin N, Koifman G, Rotter V: p53 orchestrates between normal differentiation and cancer. Seminars in cancer biology 2014; epub available online 7 January 2014. doi:10.1016/j.semcancer.2013.12.006.
  • [44]Hussain SP, Hollstein MH, Harris CC: p53 tumor suppressor gene: at the crossroads of molecular carcinogenesis, molecular epidemiology, and human risk assessment. Ann N Y Acad Sci 2000, 919:79-85.
  • [45]Warburg O: On respiratory impairment in cancer cells. Science 1956, 124(3215):269-70.
  • [46]Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, et al.: TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006, 126(1):107-20.
  • [47]Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, et al.: p53 regulates mitochondrial respiration. Science 2006, 312(5780):1650-3.
  • [48]Kawauchi K, Araki K, Tobiume K, Tanaka N: p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 2008, 10(5):611-8.
  • [49]Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al.: AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 2005, 18(3):283-93.
  • [50]Thoreen CC, Sabatini DM: AMPK and p53 help cells through lean times. Cell Metab 2005, 1(5):287-8.
  • [51]Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al.: DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006, 126(1):121-34.
  • [52]Muller PA, Vousden KH, Norman JC: p53 and its mutants in tumor cell migration and invasion. J Cell Biol 2011, 192(2):209-18.
  • [53]Guo AK, Hou YY, Hirata H, Yamauchi S, Yip AK, Chiam KH, et al.: Loss of p53 enhances NF-kappaB-dependent lamellipodia formation. J Cell Physiol 2014, 229(6):696-704.
  • [54]Yamauchi S, Hou YY, Guo AK, Hirata H, Nakajima W, Yip AK, et al.: p53-mediated activation of the mitochondrial protease HtrA2/Omi prevents cell invasion. J Cell Biol 2014, 204(7):1191-207.
  • [55]Bieging KT, Mello SS, Attardi LD: Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 2014, 14(5):359-70.
  • [56]Hager KM, Gu W: Understanding the non-canonical pathways involved in p53-mediated tumor suppression. Carcinogenesis 2014, 35(4):740-6.
  • [57]Kiaris H, Chatzistamou I, Trimis G, Frangou-Plemmenou M, Pafiti-Kondi A, Kalofoutis A: Evidence for nonautonomous effect of p53 tumor suppressor in carcinogenesis. Cancer Res 2005, 65(5):1627-30.
  • [58]Hill R, Song Y, Cardiff RD, Van Dyke T: Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 2005, 123(6):1001-11.
  • [59]Patocs A, Zhang L, Xu Y, Weber F, Caldes T, Mutter GL, et al.: Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med 2007, 357(25):2543-51.
  • [60]Yamanishi Y, Boyle DL, Green DR, Keystone EC, Connor A, Zollman S, et al.: p53 tumor suppressor gene mutations in fibroblast-like synoviocytes from erosion synovium and non-erosion synovium in rheumatoid arthritis. Arthritis Res Ther 2005, 7(1):R12-8. BioMed Central Full Text
  • [61]Fukino K, Shen L, Patocs A, Mutter GL, Eng C: Genomic instability within tumor stroma and clinicopathological characteristics of sporadic primary invasive breast carcinoma. JAMA 2007, 297(19):2103-11.
  • [62]Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, et al.: Non-cell-autonomous tumor suppression by p53. Cell 2013, 153(2):449-60.
  • [63]Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J, et al.: Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 2006, 213:131-45.
  • [64]Kerkar SP, Restifo NP: Cellular constituents of immune escape within the tumor microenvironment. Cancer Res 2012, 72(13):3125-30.
  • [65]Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, et al.: Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 2012, 72(10):2473-80.
  • [66]Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al.: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005, 121(3):335-48.
  • [67]Orimo A, Weinberg RA: Heterogeneity of stromal fibroblasts in tumors. Cancer Biol Ther 2007, 6(4):618-9.
  • [68]Coussens LM, Werb Z: Inflammation and cancer. Nature 2002, 420(6917):860-7.
  • [69]Ostrand-Rosenberg S, Sinha P: Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 2009, 182(8):4499-506.
  • [70]Reed JC, Alpers JD, Nowell PC, Hoover RG: Sequential expression of protooncogenes during lectin-stimulated mitogenesis of normal human lymphocytes. Proc Natl Acad Sci U S A 1986, 83(11):3982-6.
  • [71]Terada N, Lucas JJ, Gelfand EW: Differential regulation of the tumor suppressor molecules, retinoblastoma susceptibility gene product (Rb) and p53, during cell cycle progression of normal human T cells. J Immunol 1991, 147(2):698-704.
  • [72]Boehme SA, Lenardo MJ: TCR-mediated death of mature T lymphocytes occurs in the absence of p53. J Immunol 1996, 156(11):4075-8.
  • [73]Tak PP, Zvaifler NJ, Green DR, Firestein GS: Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol Today 2000, 21(2):78-82.
  • [74]Yamanishi Y, Boyle DL, Rosengren S, Green DR, Zvaifler NJ, Firestein GS: Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proc Natl Acad Sci U S A 2002, 99(15):10025-30.
  • [75]Tapinos NI, Polihronis M, Moutsopoulos HM: Lymphoma development in Sjogren's syndrome: novel p53 mutations. Arthritis Rheum 1999, 42(7):1466-72.
  • [76]Zheng SJ, Lamhamedi-Cherradi SE, Wang P, Xu L, Chen YH: Tumor suppressor p53 inhibits autoimmune inflammation and macrophage function. Diabetes 2005, 54(5):1423-8.
  • [77]Okuda Y, Okuda M, Bernard CC: Regulatory role of p53 in experimental autoimmune encephalomyelitis. J Neuroimmunol 2003, 135(1–2):29-37.
  • [78]He D, Li H, Yusuf N, Elmets CA, Li J, Mountz JD, et al.: IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol 2010, 184(5):2281-8.
  • [79]Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H: IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med 2009, 206(7):1457-64.
  • [80]Wang L, Yi T, Zhang W, Pardoll DM, Yu H: IL-17 enhances tumor development in carcinogen-induced skin cancer. Cancer Res 2010, 70(24):10112-20.
  • [81]Addadi Y, Moskovits N, Granot D, Lozano G, Carmi Y, Apte RN, et al.: p53 status in stromal fibroblasts modulates tumor growth in an SDF1-dependent manner. Cancer Res 2010, 70(23):9650-8.
  • [82]Moskovits N, Kalinkovich A, Bar J, Lapidot T, Oren M: p53 Attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res 2006, 66(22):10671-6.
  • [83]Riley T, Sontag E, Chen P, Levine A: Transcriptional control of human p53-regulated genes. Nat Rev 2008, 9(5):402-12.
  • [84]Donehower LA, Lozano G: 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer 2009, 9(11):831-41.
  • [85]Levine AJ: The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53. Virology 2009, 384(2):285-93.
  • [86]Havre PA, Yuan J, Hedrick L, Cho KR, Glazer PM: p53 inactivation by HPV16 E6 results in increased mutagenesis in human cells. Cancer Res 1995, 55(19):4420-4.
  • [87]Jiang D, Srinivasan A, Lozano G, Robbins PD: SV40 T antigen abrogates p53-mediated transcriptional activity. Oncogene 1993, 8(10):2805-12.
  • [88]Feng Z, Hu W, Teresky AK, Hernando E, Cordon-Cardo C, Levine AJ: Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. Proc Natl Acad Sci U S A 2007, 104(42):16633-8.
  • [89]Ak P, Levine AJ: p53 and NF-kappaB: different strategies for responding to stress lead to a functional antagonism. Faseb J 2010, 24(10):3643-52.
  • [90]Kawauchi K, Araki K, Tobiume K, Tanaka N: Activated p53 induces NF-kappaB DNA binding but suppresses its transcriptional activation. Biochem Biophys Res Commun 2008, 372(1):137-41.
  • [91]Son DS, Kabir SM, Dong YL, Lee E, Adunyah SE: Inhibitory effect of tumor suppressor p53 on proinflammatory chemokine expression in ovarian cancer cells by reducing proteasomal degradation of IkappaB. PLoS One 2012, 7(12):e51116.
  • [92]Schwitalla S, Ziegler PK, Horst D, Becker V, Kerle I, Begus-Nahrmann Y, et al.: Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell 2013, 23(1):93-106.
  • [93]Lowe JM, Menendez D, Bushel PR, Shatz M, Kirk EL, Troester MA, et al.: p53 and NF-kappaB coregulate proinflammatory gene responses in human macrophages. Cancer Res 2014, 74(8):2182-92.
  • [94]Rodier F, Campisi J: Four faces of cellular senescence. J Cell Biol 2011, 192(4):547-56.
  • [95]Davalos AR, Kawahara M, Malhotra GK, Schaum N, Huang J, Ved U, et al.: p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J Cell Biol 2013, 201(4):613-29.
  • [96]Kroemer G, Galluzzi L, Kepp O, Zitvogel L: Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013, 31:51-72.
  • [97]Zitvogel L, Apetoh L, Ghiringhelli F, Andre F, Tesniere A, Kroemer G: The anticancer immune response: indispensable for therapeutic success? J Clin Invest 2008, 118(6):1991-2001.
  • [98]Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G: Immunological aspects of cancer chemotherapy. Nat Rev Immunol 2008, 8(1):59-73.
  • [99]Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G: Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013, 39(1):74-88.
  • [100]Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, et al.: Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 2013, 38(4):729-41.
  • [101]Gasser S, Orsulic S, Brown EJ, Raulet DH: The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005, 436(7054):1186-90.
  • [102]Gasser S, Raulet DH: The DNA damage response arouses the immune system. Cancer Res 2006, 66(8):3959-62.
  • [103]Tang ML, Khan MK, Croxford JL, Tan KW, Angeli V, Gasser S: The DNA damage response induces antigen presenting cell-like functions in fibroblasts. Eur J Immunol 2014, 44(4):1108-18.
  • [104]Li H, Lakshmikanth T, Garofalo C, Enge M, Spinnler C, Anichini A, et al.: Pharmacological activation of p53 triggers anticancer innate immune response through induction of ULBP2. Cell cycle (Georgetown, Tex 2011, 10(19):3346-58.
  • [105]Textor S, Fiegler N, Arnold A, Porgador A, Hofmann TG, Cerwenka A: Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res 2011, 71(18):5998-6009.
  • [106]Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH: p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J Exp Med 2013, 210(10):2057-69.
  • [107]Meng Y, Efimova EV, Hamzeh KW, Darga TE, Mauceri HJ, Fu YX, et al.: Radiation-inducible immunotherapy for cancer: senescent tumor cells as a cancer vaccine. Mol Ther 2012, 20(5):1046-55.
  • [108]Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A, et al.: Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 2007, 204(1):49-55.
  • [109]Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, et al.: The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res 2011, 71(7):2488-96.
  • [110]Formenti SC, Demaria S: Systemic effects of local radiotherapy. Lancet Oncol 2009, 10(7):718-26.
  • [111]Formenti SC, Demaria S: Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 2013, 105(4):256-65.
  • [112]Shatz M, Menendez D, Resnick MA: The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells. Cancer Res 2012, 72(16):3948-57.
  • [113]Taura M, Eguma A, Suico MA, Shuto T, Koga T, Komatsu K, et al.: p53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines. Mol Cell Biol 2008, 28(21):6557-67.
  • [114]Mori T, Anazawa Y, Iiizumi M, Fukuda S, Nakamura Y, Arakawa H: Identification of the interferon regulatory factor 5 gene (IRF-5) as a direct target for p53. Oncogene 2002, 21(18):2914-8.
  • [115]Dharel N, Kato N, Muroyama R, Taniguchi H, Otsuka M, Wang Y, et al.: Potential contribution of tumor suppressor p53 in the host defense against hepatitis C virus. Hepatology 2008, 47(4):1136-49.
  • [116]Shen Y, Wang X, Guo L, Qiu Y, Li X, Yu H, et al.: Influenza A virus induces p53 accumulation in a biphasic pattern. Biochem Biophys Res Commun 2009, 382(2):331-5.
  • [117]Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G: DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell 2006, 17(4):1583-92.
  • [118]Munoz-Fontela C, Pazos M, Delgado I, Murk W, Mungamuri SK, Lee SW, et al.: p53 serves as a host antiviral factor that enhances innate and adaptive immune responses to influenza A virus. J Immunol 2011, 187(12):6428-36.
  • [119]Xu Y: DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. Nat Rev Immunol 2006, 6(4):261-70.
  • [120]Bruchard M, Mignot G, Derangere V, Chalmin F, Chevriaux A, Vegran F, et al.: Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 2013, 19(1):57-64.
  • [121]Cheok CF, Verma CS, Baselga J, Lane DP: Translating p53 into the clinic. Nat Rev Clin Oncol 2011, 8(1):25-37.
  • [122]Muller PA, Vousden KH: Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 2014, 25(3):304-17.
  • [123]Khoo KH, Verma CS, Lane DP: Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov 2014, 13(3):217-36.
  • [124]Gomez-Manzano C, Fueyo J, Kyritsis AP, Steck PA, Roth JA, McDonnell TJ, et al.: Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis. Cancer Res 1996, 56(4):694-9.
  • [125]Nemunaitis J, Clayman G, Agarwala SS, Hrushesky W, Wells JR, Moore C, et al.: Biomarkers Predict p53 Gene Therapy Efficacy in Recurrent Squamous Cell Carcinoma of the Head and Neck. Clin Cancer Res 2009, 15(24):7719-25.
  • [126]Lang FF, Yung WK, Sawaya R, Tofilon PJ: Adenovirus-mediated p53 gene therapy for human gliomas. Neurosurgery 1999, 45(5):1093-104.
  • [127]Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, et al.: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996, 274(5286):373-6.
  • [128]Heise C, Ganly I, Kim YT, Sampson-Johannes A, Brown R, Kirn D: Efficacy of a replication-selective adenovirus against ovarian carcinomatosis is dependent on tumor burden, viral replication and p53 status. Gene Ther 2000, 7(22):1925-9.
  • [129]Nemunaitis J, Ganly I, Khuri F, Arseneau J, Kuhn J, McCarty T, et al.: Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res 2000, 60(22):6359-66.
  • [130]Nemunaitis J, Swisher SG, Timmons T, Connors D, Mack M, Doerksen L, et al.: Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J Clin Oncol 2000, 18(3):609-22.
  • [131]Chiocca EA, Abbed KM, Tatter S, Louis DN, Hochberg FH, Barker F, et al.: A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther 2004, 10(5):958-66.
  • [132]Pflaum J, Schlosser S, Muller M: p53 Family and Cellular Stress Responses in Cancer. Front Oncol 2014, 4:285.
  • [133]Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al.: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004, 303(5659):844-8.
  • [134]Saha MN, Micallef J, Qiu L, Chang H: Pharmacological activation of the p53 pathway in haematological malignancies. J Clin Pathol 2010, 63(3):204-9.
  • [135]Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M, et al.: Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 2004, 10(12):1321-8.
  • [136]Gasparini C, Tommasini A, Zauli G: The MDM2 inhibitor Nutlin-3 modulates dendritic cell-induced T cell proliferation. Hum Immunol 2012, 73(4):342-5.
  • [137]Secchiero P, Toffoli B, Melloni E, Agnoletto C, Monasta L, Zauli G: The MDM2 inhibitor Nutlin-3 attenuates streptozotocin-induced diabetes mellitus and increases serum level of IL-12p40. Acta Diabetol 2013, 50(6):899-906.
  • [138]Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, et al.: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 2002, 8(3):282-8.
  • [139]Stegh AH: Targeting the p53 signaling pathway in cancer therapy - the promises, challenges and perils. Expert Opin Ther Targets 2012, 16(1):67-83.
  • [140]Melero I, Arina A, Murillo O, Dubrot J, Alfaro C, Perez-Gracia JL, et al.: Immunogenic cell death and cross-priming are reaching the clinical immunotherapy arena. Clin Cancer Res 2006, 12(8):2385-9.
  文献评价指标  
  下载次数:17次 浏览次数:27次