期刊论文详细信息
Journal of Biomedical Science
Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats
Guoo-Shyng Wang Hsu3  Yih-Jing Lee1  Chia-Yi Yuan2 
[1] School of Medicine, Fu-Jen Catholic University, 510 Chung-Cheng Road, Hsinchuang, New Taipei City, 24205, Taiwan;Graduate Institute of Nutrition and Food Sciences, Fu-Jen Catholic University, Hsinchuang, New Taipei City, Taiwan;Department of Nutritional Science, Fu-Jen Catholic University, 510 Chung-Cheng Road, Hsinchuang, New Taipei City, 24205, Taiwan
关键词: Intraperitoneal injection;    Functional brain tissues;    Neonatal rats;    Aluminum;   
Others  :  825045
DOI  :  10.1186/1423-0127-19-51
 received in 2012-03-11, accepted in 2012-05-21,  发布年份 2012
PDF
【 摘 要 】

Background

Higher aluminum (Al) content in infant formula and its effects on neonatal brain development are a cause for concern. This study aimed to evaluate the distribution and concentration of Al in neonatal rat brain following Al treatment, and oxidative stress in brain tissues induced by Al overload.

Methods

Postnatal day 3 (PND 3) rat pups (n =46) received intraperitoneal injection of aluminum chloride (AlCl3), at dosages of 0, 7, and 35 mg/kg body wt (control, low Al (LA), and high Al (HA), respectively), over 14 d.

Results

Aluminum concentrations were significantly higher in the hippocampus (751.0 ± 225.8 ng/g v.s. 294.9 ± 180.8 ng/g; p < 0.05), diencephalon (79.6 ± 20.7 ng/g v.s. 20.4 ± 9.6 ng/g; p < 0.05), and cerebellum (144.8 ± 36.2 ng/g v.s. 83.1 ± 15.2 ng/g; p < 0.05) in the HA group compared to the control. The hippocampus, diencephalon, cerebellum, and brain stem of HA animals displayed significantly higher levels of lipid peroxidative products (TBARS) than the same regions in the controls. However, the average superoxide dismutase (SOD) activities in the cerebral cortex, hippocampus, cerebellum, and brain stem were lower in the HA group compared to the control. The HA animals demonstrated increased catalase activity in the diencephalon, and increased glutathione peroxidase (GPx) activity in the cerebral cortex, hippocampus, cerebellum, and brain stem, compared to controls.

Conclusion

Aluminum overload increases oxidative stress (H2O2) in the hippocampus, diencephalon, cerebellum, and brain stem in neonatal rats.

【 授权许可】

   
2012 Yuan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713053710311.pdf 681KB PDF download
Figure 3. 50KB Image download
Figure 2. 70KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Love S, Jenner P: Oxidative stress in neurological disease. Brain Pathol 1999, 9:55-56.
  • [2]Youdim MB: Iron in the brain: implications for Parkinson's and Alzheimer's diseases. Mt Sinai J Med 1988, 55(1):97-101.
  • [3]Verstraeten SV, Nogueira LV, Schreier S, Oteiza PI: Effect of trivalent metal ions on phase separation and membrane lipid packing: role in lipid peroxidation. Arch Biochem Biophys 1997, 338(1):121-127.
  • [4]Exley C: The pro-oxidant activity of aluminum. Free Radic Biol Med 2004, 36(3):380-387.
  • [5]Chevion M, Berenshtein E, Stadtman ER: Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic Res 2000, 33:S99-108.
  • [6]Kowalczyk E, Kopff A, Kędziora J, Błaszczyk J, Kopff M, Niedworok J, Fijałkowski P: Effect of long-term aluminium chloride intoxication on selected biochemical parameters and oxidative-antioxidative balance in experimental animals. Polish Journal of Environmental Studies 2004, 13(1):41-43.
  • [7]Christen Y: Oxidative stress and Alzheimer disease. Am J Clin Nutr 2000, 71(2):621S-629S.
  • [8]Julka D, Gill KD: Effect of aluminum on regional brain antioxidant defense status in Wistar rats. Res Exper Med 1996, 196:187-194.
  • [9]AA Abd el-Fattah, al-Yousef HM, al-Bekairi AM, al-Sawaf HA: Vitamin E protects the brain against oxidative injury stimulated by excessive aluminum intake. Biochem Mol Biol Int 1998, 46(6):1175-1180.
  • [10]Katyal R, Desigan B, Sodhi CP, Ojha S: Oral aluminum administration and oxidative injury. Biol Trace Elem Res 1997, 57(2):125-130.
  • [11]Toda S, Yase Y: Effect of aluminum on iron-induced lipid peroxidation and protein oxidative modification of mouse brain homogenate. Biol Trace Elem Res 1998, 61(2):207-217.
  • [12]Yuan CY, Hsu GSW, Lee YJ: Aluminum alters NMDA receptor 1A and 2A/B expression on neonatal hippocampal neurons in rats. J Biomed Sci 2011, 18:81. BioMed Central Full Text
  • [13]Snell RS: Clinical neuroanatomy for medical students (Periodicals). 5th edition. Lippincott Williams & Wilkins, Philadelphia; 2001.
  • [14]Blackburn ST, Loper DL: Maternal, Fetal, and Neonatal Physiology, A Clinical Perspective. W. B. Saunders Company, Philadelphia; 1992.
  • [15]Golub MS, Han B, Keen CL: Aluminum uptake and effects on transferrin mediated iron uptake in primary cultures of rat neurons, astrocytes and oligodendrocytes. Neurotoxicology 1999, 20(6):961-970.
  • [16]Abu-Taweel GM, Ajarem JS, Ahmad M: Neurobehavioral toxic effects of perinatal oral exposure to aluminum on the developmental motor reflexes, learning, memory and brain neurotransmitters of mice offspring. Pharmacol Biochem Behav 2011, 101(1):49-56.
  • [17]Gonda Z, Lehotzky K, Miklosi A: Neurotoxicity induced by prenatal aluminum exposure in rats. Neurotoxicology 1996, 17(2):459-470.
  • [18]Guo CH, Liao SY, Yuan CH, Hsu WGS: Effects of peritoneal aluminum overload on polyamines and nitric oxide contents of testes and epididymis in the mice. Environ Toxicol Pharmacol 2006, 21:1-7.
  • [19]Fraga CG, Leibovitz BE, Tappel AL: Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic Biol Med 1988, 4:155-161.
  • [20]Malstrom B, Andreasson L, Reinhammer B: The Enzymes. XIIB. Edited by Boyer P. Academic Press, New York; 1975:533.
  • [21]Johansson LH, Borg LAH: A spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem 1988, 174:331-336.
  • [22]Paglia DE, Valentine WN: Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967, 70:158-169.
  • [23]Bradford M: A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem 1976, 72:248-254.
  • [24]Gomez M, Esparza JL, Cabre M, Garcia T, Domingo JL: Aluminum exposure through the diet: metal levels in AbetaPP transgenic mice, a model for Alzheimer's disease. Toxicology 2008, 249(2–3):214-219.
  • [25]Domingo JL, Llorens J, Sanchez DJ, Gomez M, Llobet JM, Corbella J: Age-related effects of aluminum ingestion on brain aluminum accumulation and behavior in rats. Life Sci 1996, 58(17):1387-1395.
  • [26]Sanchez-Iglesias S, Soto-Otero R, Iglesias-Gonzalez J, Barciela-Alonso MC, Bermejo-Barrera P, Mendez-Alvarez E: Analysis of brain regional distribution of aluminium in rats via oral and intraperitoneal administration. J Trace Elem Med Biol 2007, 21(Suppl 1):31-34.
  • [27]Kaizer RR, Correa MC, Spanevello RM, Morsch VM, Mazzanti CM, Goncalves JF, Schetinger MR: Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminum on different mouse brain regions. J Inorg Biochem 2005, 99(9):1865-1870.
  • [28]Sharma D, Sethi P, Hussain E, Singh R: Curcumin counteracts the aluminium-induced ageing-related alterations in oxidative stress, Na+, K + ATPase and protein kinase C in adult and old rat brain regions. Biogerontology 2009, 10(4):489-502.
  • [29]Gomez M, Esparza JL, Nogues MR, Giralt M, Cabre M, Domingo JL: Pro-oxidant activity of aluminum in the rat hippocampus: gene expression of antioxidant enzymes after melatonin administration. Free Radic Biol Med 2005, 38(1):104-111.
  • [30]Nehru B, Bhalla P: Aluminium-induced imbalance in oxidant and antioxidant determinants in brain regions of female rats: protection by centrophenoxine. Toxicol Mech Methods 2006, 16(1):21-25.
  • [31]Bhalla P, Dhawan DK: Protective role of lithium in ameliorating the aluminium-induced oxidative stress and histological changes in rat brain. Cell Mol Neurobiol 2009, 29(4):513-521.
  • [32]Esparza JL, Gomez M, Rosa Nogues M, Paternain JL, Mallol J, Domingo JL: Melatonin reduces oxidative stress and increases gene expression in the cerebral cortex and cerebellum of aluminum-exposed rats. J Pineal Res 2005, 39(2):129-136.
  • [33]Nehru B, Anand P: Oxidative damage following chronic aluminium exposure in adult and pup rat brains. J Trace Elem Med Biol 2005, 19(2–3):203-208.
  • [34]Kaur T, Bijarnia RK, Nehru B: Effect of concurrent chronic exposure of fluoride and aluminum on rat brain. Drug Chem Toxicol 2009, 32(3):215-221.
  • [35]Sánchez-Iglesias S, Méndez-Alvarez E, Iglesias-González J, Muñoz-Patiño A, Sánchez-Sellero I, Labandeira-García JL, Soto-Otero R: Brain oxidative stress and selective behaviour of aluminium in specific areas of rat brain: potential effects in a 6-OHDA-induced model of Parkinson's disease. J Neurochem 2009, 109(3):879-888.
  • [36]Spiegelman BM: Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp 2007, 287:60-63.
  • [37]Demple B: Radical ideas: genetic responses to oxidative stress. Clin Exp Pharmacol Physiol 1999, 26(1):64-68.
  • [38]Halliwell B: Gutteride JM: Free radicals in biology and medicine. 4th edition. Oxford University Press, New York; 2007.
  • [39]Gutteridge JM, Quinlan GJ, Clark I, Halliwell B: Aluminium salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochim Biophys Acta 1985, 835(3):441-447.
  • [40]Verstraeten SV, Golub MS, Keen CL, Oteiza PI: Myelin is a preferential target of aluminum-mediated oxidative damage. Arch Biochem Biophys 1997, 344(2):289-294.
  文献评价指标  
  下载次数:28次 浏览次数:23次