期刊论文详细信息
EvoDevo
Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)
Elaine C Seaver3  Emi Yamaguchi1  Michael J Boyle2 
[1] Kewalo Marine Laboratory, PBRC/University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA;Naos Island Laboratory, Smithsonian Tropical Research Institute, Apartado 0843-03089, Panamá, República de Panamá;Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd. St., Augustine, FL 32080, USA
关键词: spiralian;    hybridization;    kernel;    gut development;    digestive system;    endoderm;   
Others  :  1093230
DOI  :  10.1186/2041-9139-5-39
 received in 2014-06-22, accepted in 2014-09-17,  发布年份 2014
PDF
【 摘 要 】

Background

Metazoan digestive systems develop from derivatives of ectoderm, endoderm and mesoderm, and vary in the relative contribution of each germ layer across taxa and between gut regions. In a small number of well-studied model systems, gene regulatory networks specify endoderm and mesoderm of the gut within a bipotential germ layer precursor, the endomesoderm. Few studies have examined expression of endomesoderm genes outside of those models, and thus, it is unknown whether molecular specification of gut formation is broadly conserved. In this study, we utilize a sequenced genome and comprehensive fate map to correlate the expression patterns of six transcription factors with embryonic germ layers and gut subregions during early development in Capitella teleta.

Results

The genome of C. teleta contains the five core genes of the sea urchin endomesoderm specification network. Here, we extend a previous study and characterize expression patterns of three network orthologs and three additional genes by in situ hybridization during cleavage and gastrulation stages and during formation of distinct gut subregions. In cleavage stage embryos, Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a are expressed in all four macromeres, the endoderm precursors. Ct-otx, Ct-blimp1, and Ct-nkx2.1a are also expressed in presumptive endoderm of gastrulae and later during midgut development. Additional gut-specific expression patterns include Ct-otx, Ct-bra, Ct-foxAB and Ct-gsc in oral ectoderm; Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a in the foregut; and both Ct-bra and Ct-nkx2.1a in the hindgut.

Conclusions

Identification of core sea urchin endomesoderm genes in C. teleta indicates they are present in all three bilaterian superclades. Expression of Ct-otx, Ct-blimp1 and Ct-bra, combined with previously published Ct-foxA and Ct-gataB1 patterns, provide the most comprehensive comparison of these five orthologs from a single species within Spiralia. Each ortholog is likely involved in endoderm specification and midgut development, and several may be essential for establishment of the oral ectoderm, foregut and hindgut, including specification of ectodermal and mesodermal contributions. When the five core genes are compared across the Metazoa, their conserved expression patterns suggest that ‘gut gene’ networks evolved to specify distinct digestive system subregions, regardless of species-specific differences in gut architecture or germ layer contributions within each subregion.

【 授权许可】

   
2014 Boyle et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150130161539347.pdf 2202KB PDF download
Figure 4. 121KB Image download
Figure 3. 123KB Image download
Figure 2. 138KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Wilson DB: Considerations of cell-lineage and ancestral reminiscence. Ann NY Acad Sci 1898, 11:1-27.
  • [2]Henry JQ, Martindale MQ: Conservation and innovation in spiralian development. Hydrobiologia 1999, 402:255-265.
  • [3]Henry JJ, Martindale MQ, Boyer BC: The unique developmental program of the flatworm, Neochildia fusca. Dev Biol 2000, 220:285-295.
  • [4]Maduro MF, Rothman JH: Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm. Dev Biol 2002, 246:68-85.
  • [5]Martindale MQ: The evolution of metazoan axial properties. Nat Rev Genet 2005, 6:917-927.
  • [6]Rodaway A, Takeda H, Koshida S, Broadbent J, Price B, Smith JC, Patient R, Holder N: Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. Development 1999, 126:3067-3078.
  • [7]Stainier DY: A glimpse into the molecular entrails of endoderm formation. Genes Dev 2002, 16:893-907.
  • [8]Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Z, Schilstra MJ, Clarke PJ, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H: A genomic regulatory network for development. Science 2002, 295:1669-1678.
  • [9]Loose M, Patient R: A genetic regulatory network for mesendoderm formation. Dev Biol 2004, 271:467-478.
  • [10]Davidson EH, Erwin DH: Gene regulatory networks and the evolution of animal body plans. Science 2006, 311:796-800.
  • [11]Peter IS, Davidson EH: The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. Dev Biol 2010, 340:188-199.
  • [12]Rodaway A, Patient R: Mesendoderm. an ancient germ layer? Cell 2001, 105:169-172.
  • [13]Peter IS, Davidson EH: A gene regulatory network controlling the embryonic specification of endoderm. Nature 2011, 474:635-639.
  • [14]Röttinger E, Dahlin P, Martindale MQ: A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of β-catenin/TCF signaling. PLoS Genet 2012, 8:e1003164.
  • [15]Hinman VF, Nguyen AT, Cameron RA, Davidson EH: Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc Natl Acad Sci U S A 2003, 100:13356-13361.
  • [16]Hinman VF, Davidson EH: Evolutionary plasticity of developmental gene regulatory network architecture. Proc Natl Acad Sci U S A 2007, 104:19404-19409.
  • [17]Pires-daSilva A, Sommer RJ: The evolution of signalling pathways in animal development. Nat Rev Genet 2003, 4:39-49.
  • [18]Nichols SA, Dirks W, Pearse JS, King N: Early evolution of animal cell signaling and adhesion genes. Proc Natl Acad Sci U S A 2006, 103:12451-12456.
  • [19]Murakami R, Okumura T, Uchiyama H: GATA factors as key regulatory molecules in the development of Drosophila endoderm. Dev Growth Differ 2005, 47:581-589.
  • [20]Maduro MF: Structure and evolution of the C. elegans embryonic endomesoderm network. Biochim Biophys Acta 2009, 1789:250-260.
  • [21]Kirschner M, Gerhart J: Evolvability. Proc Natl Acad Sci U S A 1998, 95:8420-8427.
  • [22]Ettensohn CA, Kitazawa C, Cheers MS, Leonard JD, Sharma T: Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network. Development 2007, 134:3077-3087.
  • [23]Carroll SB: Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 2008, 134:25-36.
  • [24]Sethi AJ, Angerer RC, Angerer LM: Gene regulatory network interactions in sea urchin endomesoderm induction. PLoS Biol 2009, 7:e1000029.
  • [25]Blake JA, Grassle JP, Eckelbarger KJ: Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. In Proceedings of the Ninth International Polychaete Conference: 12–18 August 2007; Portland Edited by Maciolek NJ, Blake JA. 2009. Zoosymposia 2009, 2:25–53
  • [26]Costello DP, Henley C: Spiralian Development: A Perspective. Am Zool 1976, 16:277-291.
  • [27]Meyer NP, Boyle MJ, Martindale MQ, Seaver EC: A comprehensive fate map by intracellular injection of identified blastomeres in the marine polychaete Capitella teleta. EvoDevo 2010, 1:8. BioMed Central Full Text
  • [28]Eisig H: Zur Entwicklungsgeschichte der Capitelliden. Mittheilungen Aus Der Zoologischen Station Zu Neapel 1899, 13:1-292.
  • [29]Seaver EC, Thamm K, Hill SD: Growth patterns during segmentation in the two polychaete annelids, Capitella sp. I and Hydroides elegans: comparisons at distinct life history stages. Evol Dev 2005, 7:312-326.
  • [30]Meyer NP, Seaver EC: Neurogenesis in an annelid: characterization of brain neural precursors in the polychaete Capitella sp. I. Dev Biol 2009, 335:237-252.
  • [31]Boyle MJ, Seaver EC: Evidence of a dorsal pharynx in the marine polychaete Capitella teleta. In Proceedings of the Ninth International Polychaete Conference: 12–18 August 2007; Portland Edited by Maciolek NJ, Blake JA. Zoosymposia 2009, 2:317–328
  • [32]Meyer NP, Seaver EC: Cell Lineage and Fate Map of the Primary Somatoblast of the Polychaete Annelid Capitella teleta. Integr Comp Biol 2010, 50:756-767.
  • [33]Seaver EC, Kaneshige LM: Expression of ‘segmentation’ genes during larval and juvenile development in the polychaetes Capitella sp. I and H. elegans. Dev Biol 2006, 289:179-194.
  • [34]Fröbius AC, Seaver EC: ParaHox gene expression in the polychaete annelid Capitella sp. I. Dev Genes Evol 2006, 216:81-88.
  • [35]Dill KK, Thamm K, Seaver EC: Characterization of twist and snail gene expression during mesoderm and nervous system development in the polychaete annelid Capitella sp. I. Dev Genes Evol 2007, 217:435-447.
  • [36]Fröbius AC, Matus DQ, Seaver EC: Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the lophotrochozoan Capitella sp. I. PloS One 2008, 3:e4004.
  • [37]Boyle MJ, Seaver EC: Developmental expression of foxA and gata genes during gut formation in the polychaete annelid, Capitella sp. I. Evol Dev 2008, 10:89-105.
  • [38]Dill KK, Seaver EC: Vasa and nanos are coexpressed in somatic and germ line tissue from early embryonic cleavage stages through adulthood in the polychaete Capitella sp. I. Dev Genes Evol 2008, 218:453-463.
  • [39]Shimeld SM, Boyle MJ, Brunet T, Luke GN, Seaver EC: Clustered Fox genes in lophotrochozoans and the evolution of the bilaterian Fox gene cluster. Dev Biol 2010, 340:234-248.
  • [40]Giani VC Jr, Yamaguchi E, Boyle MJ, Seaver EC: Somatic and germline expression of piwi during development and regeneration in the marine polychaete annelid Capitella teleta. EvoDevo 2011, 2:10. BioMed Central Full Text
  • [41]Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I: The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 2012, 40:D26-D32.
  • [42]Wilson EB: The cell-lineage of Nereis. J Morphol 1892, VI:361-478.
  • [43]Boyer BC, Henry JJ, Martindale MQ: Dual Origins of Mesoderm in a Basal Spiralian: Cell Lineage Analyses in the Polyclad Turbellarian Hoploplana inquilina. Dev Biol 1996, 179:329-338.
  • [44]Oliveri P, Davidson EH: Gene regulatory network controlling embryonic specification in the sea urchin. Curr Opin Genet Dev 2004, 14:351-360.
  • [45]Venkatesh TV, Holland ND, Holland LZ, Su MT, Bodmer R: Sequence and developmental expression of amphioxus AmphiNk2-1: insights into the evolutionary origin of the vertebrate thyroid gland and forebrain. Dev Genes Evol 1999, 209:254-259.
  • [46]Ristoratore F, Spagnuolo A, Aniello F, Branno M, Fabbrini F, Di Lauro R: Expression and functional analysis of Cititf1, an ascidian NK-2 class gene, suggest its role in endoderm development. Development 1999, 126:5149-5159.
  • [47]Takacs CM, Moy VN, Peterson KJ: Testing putative hemichordate homologues of the chordate dorsal nervous system and endostyle: expression of NK2.1 (TTF-1) in the acorn worm Ptychodera flava (Hemichordata, Ptychoderidae). Evol Dev 2002, 4:405-417.
  • [48]Harfe BD, Fire A: Muscle and nerve-specific regulation of a novel NK-2 class homeodomain factor in Caenorhabditis elegans. Development 1998, 125:421-429.
  • [49]Zaffran S, Das G, Frasch M: The NK-2 homeobox gene scarecrow (scro) is expressed in pharynx, ventral nerve cord and brain of Drosophila embryos. Mech Dev 2000, 94:237-241.
  • [50]Dunn EF, Moy VN, Angerer LM, Angerer RC, Morris RL, Peterson KJ: Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian. Evol Dev 2007, 9:10-24.
  • [51]Hejnol A, Martindale MQ: Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 2008, 456:382-386.
  • [52]Neidert AH, Panopoulou G, Langeland JA: Amphioxus goosecoid and the evolution of the head organizer and prechordal plate. Evol Dev 2000, 2:303-310.
  • [53]Goriely A, Stella M, Coffinier C, Kessler D, Mailhos C, Dessain S, Desplan C: A functional homologue of goosecoid in Drosophila. Development 1996, 122:1641-1650.
  • [54]Angerer LM, Oleksyn DW, Levine AM, Xiaotao L, Klein WH, Angerer RC: Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes. Development 2001, 128:4393-4404.
  • [55]Arendt D, Technau U, Wittbrodt J: Evolution of the bilaterian larval foregut. Nature 2001, 409:81-85.
  • [56]Lartillot N, Le Gouar M, Adoutte A: Expression patterns of fork head and goosecoid homologues in the mollusc Patella vulgata supports the ancestry of the anterior mesendoderm across Bilateria. Dev Genes Evol 2002, 212:551-561.
  • [57]Martin-Duran JM, Janssen R, Wennberg S, Budd GE, Hejnol A: Deuterostomic development in the protostome Priapulus caudatus. Curr Biol 2012, 22:2161-2166.
  • [58]Tu Q, Brown CT, Davidson EH, Oliveri P: Sea urchin Forkhead gene family: phylogeny and embryonic expression. Dev Biol 2006, 300:49-62.
  • [59]Yu JK, Mazet F, Chen YT, Huang SW, Jung KC, Shimeld SM: The Fox genes of Branchiostoma floridae. Dev Genes Evol 2008, 218:629-638.
  • [60]Fuchs J, Martindale MQ, Hejnol A: Gene expression in bryozoan larvae suggest a fundamental importance of pre-patterned blastemic cells in the bryozoan life-cycle. EvoDevo 2011, 2:13. BioMed Central Full Text
  • [61]Grassle JP, Grassle JF: Sibling species in the marine pollution indicator Capitella (polychaeta). Science 1976, 192:567-569.
  • [62]Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW: GenBank. Nucleic Acids Res 2013, 41:D36-D42.
  • [63]Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005, 21:2104-2105.
  • [64]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754-755.
  • [65]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [66]Boyle MJ, Seaver EC: Expression of FoxA and GATA transcription factors correlates with regionalized gut development in two lophotrochozoan marine worms: Chaetopterus (Annelida) and Themiste lageniformis (Sipuncula). EvoDevo 2010, 1:2. BioMed Central Full Text
  • [67]Lartillot N, Lespinet O, Vervoort M, Adoutte A: Expression pattern of Brachyury in the mollusc Patella vulgata suggests a conserved role in the establishment of the AP axis in Bilateria. Development 2002, 129:1411-1421.
  • [68]Nederbragt AJ, te Welscher P, van den Driesche S, van Loon AE, Dictus WJ: Novel and conserved roles for orthodenticle/otx and orthopedia/otp orthologs in the gastropod mollusc Patella vulgata. Dev Genes Evol 2002, 212:330-337.
  • [69]Arenas-Mena C: Embryonic expression of HeFoxA1 and HeFoxA2 in an indirectly developing polychaete. Dev Genes Evol 2006, 216:727-736.
  • [70]Arenas-Mena C, Wong KS: HeOtx expression in an indirectly developing polychaete correlates with gastrulation by invagination. Dev Genes Evol 2007, 217:373-384.
  • [71]Gillis WJ, Bowerman B, Schneider SQ: Ectoderm- and endomesoderm-specific GATA transcription factors in the marine annelid Platynereis dumerilli. Evol Dev 2007, 9:39-50.
  • [72]Arenas-Mena C: The transcription factors HeBlimp and HeT-brain of an indirectly developing polychaete suggest ancestral endodermal, gastrulation, and sensory cell-type specification roles. J Exp Zool B 2008, 310:567-576.
  • [73]Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P, Arendt D: Ancient animal microRNAs and the evolution of tissue identity. Nature 2010, 463:1084-1088.
  • [74]Martin-Duran JM, Romero R: Evolutionary implications of morphogenesis and molecular patterning of the blind gut in the planarian Schmidtea polychroa. Dev Biol 2011, 352:164-176.
  • [75]Arenas-Mena C: Brachyury, Tbx2/3 and sall expression during embryogenesis of the indirectly developing polychaete Hydroides elegans. Int J Dev Biol 2013, 57:73-83.
  • [76]Martindale MQ, Hejnol A: A developmental perspective: changes in the position of the blastopore during bilaterian evolution. Dev Cell 2009, 17:162-174.
  • [77]Hejnol A: Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc Lond B Biol 2009, 276:4261-4270.
  • [78]Mazza ME, Pang K, Martindale MQ, Finnerty JR: Genomic organization, gene structure, and developmental expression of three clustered otx genes in the sea anemone Nematostella vectensis. J Exp Zool B 2007, 308:494-506.
  • [79]Li X, Chuang C-K, Mao C-A, Angerer LM, Klein WH: Two Otx Proteins Generated from Multiple Transcripts of a Single Gene in Strongylocentrotus purpuratus. Dev Biol 1997, 187:253-266.
  • [80]Hinman VF, Nguyen AT, Davidson EH: Expression and function of a starfish Otx ortholog, Am Otx: a conserved role for Otx proteins in endoderm development that predates divergence of the eleutherozoa. Mech Dev 2003, 120:1165-1176.
  • [81]Williams NA, Holland PW: Gene and domain duplication in the chordate Otx gene family: insights from Amphioxus Otx. Mol Biol Evol 1998, 15:600-607.
  • [82]Fumasoni I, Meani N, Rambaldi D, Scafetta G, Alcalay M, Ciccarelli FD: Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates. BMC Evol Biol 2007, 7:187. BioMed Central Full Text
  • [83]Ruvinsky I, Silver LM, Gibson-Brown JJ: Phylogenetic analysis of T-Box genes demonstrates the importance of amphioxus for understanding evolution of the vertebrate genome. Genetics 2000, 156:1249-1257.
  • [84]Carlsson P, Mahlapuu M: Forkhead transcription factors: key players in development and metabolism. Dev Biol 2002, 250:1-23.
  • [85]Gillis WQ, Bowerman BA, Schneider SQ: The evolution of protostome GATA factors: molecular phylogenetics, synteny, and intron/exon structure reveal orthologous relationships. BMC Evol Biol 2008, 8:112. BioMed Central Full Text
  • [86]Grens A, Gee L, Fisher DA, Bode HR: CnNK-2, an NK-2 homeobox gene, has a role in patterning the basal end of the axis in Hydra. Dev Biol 1996, 180:473-488.
  • [87]Ryan JF, Burton PM, Mazza ME, Kwong GK, Mullikin JC, Finnerty JR: The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis. Genome Biol 2006, 7:R64. BioMed Central Full Text
  • [88]Larroux C, Fahey B, Degnan SM, Adamski M, Rokhsar DS, Degnan BM: The NK homeobox gene cluster predates the origin of Hox genes. Curr Biol 2007, 17:706-710.
  • [89]Fahey B, Larroux C, Woodcroft BJ, Degnan BM: Does the high gene density in the sponge NK homeobox gene cluster reflect limited regulatory capacity? Biol Bull 2008, 214:205-217.
  • [90]Matus DQ, Pang K, Marlow H, Dunn CW, Thomsen GH, Martindale MQ: Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci U S A 2006, 103:11195-11200.
  • [91]Lambert JD, Chan XY, Spiecker B, Sweet HC: Characterizing the embryonic transcriptome of the snail Ilyanassa. Integr Comp Biol 2010, 50:768-777.
  • [92]Ruffins SW, Ettensohn CA: A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Development 1996, 122:253-263.
  • [93]Sulston JE, Schierenberg E, White JG, Thomson JN: The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983, 100:64-119.
  • [94]Davidson EH, Cameron RA, Ransick A: Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms. Development 1998, 125:3269-3290.
  • [95]Goldstein B: Induction of gut in Caenorhabditis elegans embryos. Nature 1992, 357:255-257.
  • [96]De Robertis EM, Blum M, Niehrs C: Steinbeisser: goosecoid and the organizer. Development 1992, 116:167-171.
  • [97]De Robertis EM: Goosecoid. In Gastrulation: From Cells to Embryo. 1st edition. Edited by Stern CD. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2004:731.
  • [98]Seaver EC, Yamaguchi E, Richards GS, Meyer NP: Expression of the pair-rule gene homologs runt, Pax3/7, even-skipped-1 and even-skipped-2 during larval and juvenile development of the polychaete annelid Capitella teleta does not support a role in segmentation. EvoDevo 2012, 3:8. BioMed Central Full Text
  • [99]True JR, Carroll SB: Gene co-option in physiological and morphological evolution. Ann Rev Cell Dev Biol 2002, 18:53-80.
  • [100]Sanetra M, Begemann G, Becker MB, Meyer A: Conservation and co-option in developmental programmes: the importance of homology relationships. Front Zool 2005, 2:15. BioMed Central Full Text
  • [101]Monteiro A, Podlaha O: Wings, horns, and butterfly eyespots: how do complex traits evolve? PLoS Biol 2009, 7:e37.
  • [102]Oliveri P, Walton KD, Davidson EH, McClay DR: Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo. Development 2006, 133:4173-4181.
  • [103]Maduro MF: Endomesoderm specification in Caenorhabditis elegans and other nematodes. Bioessays 2006, 28:1010-1022.
  • [104]Maduro MF, Meneghini MD, Bowerman B, Broitman-Maduro G, Rothman JH: Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3beta homolog is mediated by MED-1 and -2 in C. elegans. Mol Cell 2001, 7:475-485.
  • [105]Horner MA, Quintin S, Domeier ME, Kimble J, Labouesse M, Mango SE: pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev 1998, 12:1947-1952.
  • [106]Kalb JM, Lau KK, Goszczynski B, Fukushige T, Moons D, Okkema PG, McGhee JD: pha-4 is Ce-fkh-1, a fork fork head/HNF-3α, β, γ homolog that functions in organogenesis of the C. elegans pharynx. Development 1998, 125:2171-2180.
  • [107]Broitman-Maduro G, Lin KT, Hung WW, Maduro MF: Specification of the C. elegans MS blastomere by the T-box factor TBX-35. Development 2006, 133:3097-3106.
  • [108]Lambert JD: Mesoderm in spiralians: the organizer and the 4d cell. J Exp Zool B Mol Dev Evol 2007, 310:15-23.
  • [109]Ackermann C, Dorresteijn A, Fischer A: Clonal domains in postlarval Platynereis dumerilii (Annelida: Polychaeta). J Morphol 2005, 266:258-280.
  • [110]Koinuma S, Umesono Y, Watanabe K, Agata K: Planaria FoxA (HNF3) homologue is specifically expressed in the pharynx-forming cells. Gene 2000, 259:171-176.
  • [111]Cho SJ, Valles Y, Giani VC Jr, Seaver EC, Weisblat DA: Evolutionary dynamics of the wnt gene family: a lophotrochozoan perspective. Mol Biol Evol 2010, 27:1645-1658.
  • [112]Thamm K, Seaver EC: Notch signaling during larval and juvenile development in the polychaete annelid Capitella sp. I. Dev Biol 2008, 320:304-318.
  文献评价指标  
  下载次数:12次 浏览次数:9次