期刊论文详细信息
Lipids in Health and Disease
Arachidonic acid metabolites in pathogenic yeasts
Carolina H Pohl2  Jacobus Albertyn1  Johan LF Kock1  Ruan Ells1 
[1] Department of Microbial, biochemical and food Biotechnology, University of the Free State, Bloemfontein, 9300, South Africa;Department of Microbial, biochemical and food Biotechnology, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
关键词: Yeasts;    Pathogenic;    Oxylipins;    Arachidonic acid;   
Others  :  1160234
DOI  :  10.1186/1476-511X-11-100
 received in 2012-06-19, accepted in 2012-08-03,  发布年份 2012
PDF
【 摘 要 】

Although most of what is known about the biology and function of arachidonic acid metabolites comes from the study of mammalian biology, these compounds can also be produced by lower eukaryotes, including yeasts and other fungi. It is also in this group of organisms that the least is known about the metabolic pathways leading to the production of these compounds as well as the functions of these compounds in the biology of fungi and yeasts. This review will deal with the discovery of oxylipins from polyunsaturated fatty acids, and more specifically the arachidonic acid derived eicosanoids, such as 3-hydroxy eicosatetraenoic acid, prostaglandin F and prostaglandin E2, in yeasts starting in the early 1990s. This review will also focus on what is known about the metabolic pathways and/or proteins involved in the production of these compounds in pathogenic yeasts. The possible roles of these compounds in the biology, including the pathology, of these organisms will be discussed.

【 授权许可】

   
2012 Ells et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150410100255480.pdf 228KB PDF download
【 参考文献 】
  • [1]Van Bogaert INA, Groeneboer S, Saerens K, Soetaert W: The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. FEBS J 2011, 278:206-221.
  • [2]Kock JLF, Strauss CJ, Pohl CH, Nigam S: The distribution of 3-hydroxy oxylipins in fungi. Prostag Oth Lipid M 2003, 71:85-96.
  • [3]Smith WL: The eicosanoids and their biochemical mechanism of action. Biochem J 1989, 259:315-324.
  • [4]Zeldin DC: Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem 2001, 276:36059-36062.
  • [5]Serhan CN, Arita M, Hong S, Gotlinger K: Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 2004, 39:1125-1132.
  • [6]Murakami M, Kudo I: Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. Prog Lipid Res 2004, 43:3-35.
  • [7]Henderson WR: The role of leukotrienes in inflammation. Ann Intern Med 1994, 121:684-697.
  • [8]Carroll MA, McGiff JC: A new class of lipid mediators: cytochrome P450 arachidonate metabolites. Thorax 2000, 55:S13-S16.
  • [9]Zhu Y, Schieber EB, McGiff JC, Balazy M: Identification of arachidonate P-450 metabolites in human platelet phospholipids. Hypertension 1995, 25:854-859.
  • [10]Buczynski MW, Dumlao DS, Dennis ED: Thematic review series: proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res 2009, 50:1015-1038.
  • [11]Tsitsigiannis DI, Keller NP: Oxylipins as developmental and host-fungal communication signals. Trends Microbiol 2007, 15:109-118.
  • [12]Botha A, Kock JLF, van Dyk MS, Coetzee DJ, Augustyn OPH, Botes PJ: Yeast eicosanoids. IV. Evidence for prostaglandin production during ascosporogenesis by Dipodascopsis tóthii. System Appl Microbiol 1993, 16:159-163.
  • [13]Coetzee DJ, Kock JLF, Botha A, van Dyk MS, Smit EJ, Botes PJ, Augustyn OPH: The distribution of arachidonic acid metabolites in the life cycle of Dipodascopsis uninucleata. System Appl Microbiol 1992, 15:311-318.
  • [14]Fox SR, Hamberg M, Friend J, Ratledge C: Evidence for the mitochondrial biosynthesis of 3R-Hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid in the yeast Dipodascopsis uninucleata. Lipids 2000, 35:1205-1214.
  • [15]Kock JLF, Coetzee DJ, van Dyk MS, Truscott M, Botha A, Augustyn OP: Evidence for, and taxonomic value of, an arachidonic acid cascade in the Lipomycetaceae. Antonie Leeuwenhoek 1992, 62:251-259.
  • [16]Kock JLF, Coetzee DJ, van Dyk MS, Truscott M, Cloete FC, van Wyk V, Augustyn OPH: Evidence for pharmacologically active prostaglandins in yeasts. S Afr J Sci 1991, 87:73-75.
  • [17]Van Dyk MS, Kock JLF, Coetzee DJ, Augustyn OPH, Nigam S: Isolation of a novel arachidonic acid metabolite 3-hydroxy-5,8,11,14-eicosatetraenoic acid (3-HETE) from the yeast Dipodascopsis uninucleata. FEBS Lett 1991, 283:195-198.
  • [18]Deva R, Ciccoli R, Kock JLF, Nigam S: Involvement of aspirin-sensitive oxylipins in vulvovaginal candidiasis. FEMS Microbiol Lett 2001, 198:37-43.
  • [19]Deva R, Ciccoli R, Schewe T, Kock JLF, Nigam S: Arachidonic acid stimulates cell growth and forms a novel oxygenated metabolite in Candida albicans. Biochim Biophys Acta 2000, 1486:299-311.
  • [20]Ells R: The effect of arachidonic acid on lipid metabolism and biofilm formation of two closely related Candida species. Magister Scientiae dissertation. University of the Free State, Department of Microbial, Biochemical and Food Biotechnology; 2008.
  • [21]Noverr MC, Phare SM, Toews GB, Coffey MJ, Huffnagle GB: Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect Immun 2001, 69:2957-2963.
  • [22]Erb-Downward JR, Huffnagle GB: Cryptococcus neoformans produces authentic prostaglandin E2 without a cyclooxygenase. Eukaryot Cell 2007, 6:346-350.
  • [23]Erb-Downward JR, Noverr MC: Characterization of prostaglandin E2 production by Candida albicans. Infect Immun 2007, 75:3498-3505.
  • [24]Noverr MC, Toews GB, Huffnagle GB: Production of prostaglandins and leukotrienes by pathogenic fungi. Infect Immun 2002, 70:400-402.
  • [25]Erb-Downward JR, Noggle RM, Williamson PR, Huffnagle GB: The role of laccase in prostaglandin production by Cryptococcus neoformans. Mol Microbiol 2008, 68:1428-1437.
  • [26]Alem MAS, Douglas LJ: Effects of aspirin and other nonsteroidal anti-inflammatory drugs on biofilms and planktonic cells of Candida albicans. Antimicrob Agents Chemother 2004, 48:41-47.
  • [27]Alem MAS, Douglas LJ: Prostaglandin production during growth of Candida albicans biofilms. J Med Microbiol 2005, 54:1001-1005.
  • [28]Segal E: Candida, still number one – what do we know and where are we going from there? Mycoses 2005, 48:3-11.
  • [29]Ells R, Kock JLF, Albertyn J, Kemp G, Pohl CH: Effect of inhibitors of arachidonic acid metabolism on prostaglandin E2 production by Candida albicans and Candida dubliniensis biofilms. Med Microbiol Immunol 2011, 200:23-28.
  • [30]Shiraki Y, Ishibashi Y, Hiruma M, Nishikawa A, Ikeda S: Candida albicans abrogates the expression of interferon-γ-inducible protein-10 in human keratinocytes. FEMS Immunol Med Microbiol 2008, 54:122-128.
  • [31]Biondo GA, Dias-Melicio LA, Bordon-Graciani AP, Acorci-Valério MJ, Soares AMVC: Paracoccidioides brasiliensis uses endogenous and exogenous arachidonic acid for PGEx production. Mycopathologia 2010, 170:123-130.
  • [32]Bordon AP, Dias-Melicio LA, Acorci MJ, Biondo GA, Fecchio D, Peraçoli MTS, Soares AMVC: Prostaglandin E2 production by high and low virulent strains of Paracoccidioides brasiliensis. Mycopathologia 2007, 163:129-135.
  • [33]Konturek SJ, Pawlik W: Physiology and pharmacology of prostaglandins. Dig Dis Sci 1986, 31:6S-19S.
  • [34]Yilmaz E: Biotechnological production of prostaglandin. Biotech Adv 2001, 19:387-397.
  • [35]Brodhun F, Feussner I: Oxylipins in fungi. FEBS J 2011, 278:1047-1063.
  • [36]Botha A, Kock JLF, Nigam S: The production of eicosanoid precursors by mucoralean fungi. Adv Exp Med Biol 1997, 433:227-229.
  • [37]Lamacka M, Sajbidor J: The content of prostaglandins and their precursors in Mortierella and Cunninghamella species. Lett Appl Microbiol 1998, 26:224-226.
  • [38]Haas-Stapleton EJ, Lu Y, Hong S, Arita M, Favoreto S, Nigam S, Serhan CN, Agabian N: Candida albicans modulates host defense by biosynthesizing the pro-resolving mediator Resolvin E1. PLoS One 2007, 2:e1316.
  • [39]Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP: Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 2005, 151:1809-1821.
  • [40]Park J, Lee S, Choi J, Ahn K, Park B, Park J, Kang S, Lee Y-H: Fungal cytochrome P450 database. BMC Genomics 2008, 9:402.
  • [41]Funk CD: Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001, 294:1871-1875.
  • [42]Goodwin JS, Ceuppens J: Regulation of the immune response by prostaglandins. J Clin Immunol 1983, 3:295-315.
  • [43]Lamačka M, Šajbidor J: Biotechnological production of prostaglandins. Appl Microbiol Biotechnol 1997, 47:199-206.
  • [44]Hatae N, Sugimoto Y, Ichikawa A: Prostaglandin receptors: advances in the study of EP3 receptor signaling. J Biochem 2002, 131:781-784.
  • [45]Sornasse T, Larenas PV, Davis KA: deVries JE, Yssel H: Differentiation and stability of T Helper 1 and 2 cells derived from naive human neonatal CD4+T cells, analyzed at the single-cell level. J Exp Med 1996, 184:473-483.
  • [46]Delves PJ, Roitt IM: The immune system. Second of two parts. N Engl J Med 2000, 343:108-117.
  • [47]van der Pouw Kraan TCTM, Boeije LCM, Smeenk RJT, Wijdenes J, Aarden LA: Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. J Exp Med 1995, 181:775-779.
  • [48]Shibata Y, Henriksen RA, Honda I, Nakamura RM, Myrvik QN: Splenic PGE2-releasing macrophages regulate Th1 and Th2 immune responses in mice treated with heat-killed BCG. J Leukoc Biol 2005, 78:1281-1290.
  • [49]Betz M, Fox BS: Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J Immunol 1991, 146:108-113.
  • [50]Noverr MC, Erb-Downward JR, Huffnagle GB: Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin Microbiol Rev 2003, 16:517-533.
  • [51]Romani L: Innate and adaptive immunity in Candida albicans infections and saprophytism. J Leukoc Biol 2000, 68:175-179.
  • [52]Santoni G, Boccanera M, Adriani D, Lucciarini R, Amantini C, Morrone S, Cassone A, De Bernardis F: Immune cell-mediated protection against vaginal candidiasis: Evidence for a major role of vaginal CD4+ T cells and possible participation of other local lymphocyte effectors. Infect Immun 2002, 70:4791-4797.
  • [53]Schaller M, Mailhammer R, Korting HC: Cytokine expression induced by Candida albicans in a model of cutaneous candidosis based on reconstituted human epidermis. J Med Microbiol 2002, 51:672-676.
  • [54]Cenci E, Mencacci A, Spaccapelo R, Tonnetti L, Mosci P, Enssle KH, Puccetti P, Romani L, Bistoni F: T helper cell type 1 (Th1)- and Th2-like responses are present in mice with gastric candidiasis but protective immunity is associated with Th1 development. J Infect Dis 1995, 171:1279-1288.
  • [55]Montagnoli C, Sandini S, Bacci A, Romani L, La Valle R: Immunogenicity and protective effect of recombinant enolase of Candida albicans in a murine model of systemic candidiasis. Med Mycol 2004, 42:319-324.
  • [56]Romagnoli G, Nisini R, Chiani P, Mariotti S, Teloni R, Cassone A, Torosantucci A: The interaction of human dendritic cells with yeast and germ-tube forms of Candida albicans leads to efficient fungal processing, dendritic cell maturation, and acquisition of a Th1 response-promoting function. J Leukoc Biol 2004, 75:117-126.
  • [57]Traynor TR, Kuziel WA, Toews GB, Huffnagle GB: CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J Immunol 2000, 164:2021-2027.
  • [58]Osterholzer JJ, Surana R, Milam JE, Montano GT, Chen GH, Sonstein J, Curtis JL, Huffnagle GB, Toews GB, Olszewski MA: Cryptococcal urease promotes the accumulation of immature dendritic cells and a non-protective T2 immune response within the lung. Am J Pathol 2009, 174:932-943.
  • [59]Kundu G, Noverr MC: Exposure to host or fungal PGE2 abrogates protection following immunization with Candida-pulsed dendritic cells. Med Mycol 2011, 49:380-394.
  • [60]Navarathna DHMLP, Nickerson KW, Duhamel GE, Jerrels TR, Petro TM: Exogenous farnesol interferes with the normal progression of cytokine expression during candidiasis in a mouse model. Infect Immun 2007, 75:4006-4011.
  • [61]Smeekens SP, van de Veerdonk FL, van der Meer JWM, Kullberg BJ, Joosten LAB, Netea MG: The Candida Th17 response is dependent on mannan- and β-glucan-induced prostaglandin E2. Int Immunol 2010, 22:889-895.
  • [62]Smeekens SP, van de Veerdonk FL, Joosten LAB, Jacobs L, Jansen T, Williams DL, van der Meer JWM, Kullberg BJ, Netea MG: The classical CD14++ CD16- monocytes, but not the patrolling CD14+ CD16+ monocytes, promote Th17 responses to Candida albicans. Eur J Immunol 2011, 41:2915-2924.
  • [63]Gagliardi MC, Teloni R, Mariotti S, Bromuro C, Chiani P, Romagnoli G, Giannoni F, Torosantucci A, Nisini R: Endogenous PGE2 promotes the induction of human Th17 responses by fungal β-glucan. J Leukoc Biol 2010, 88:947-954.
  • [64]Noverr MC, Huffnagle GB: Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 2004, 72:6206-6210.
  • [65]Kalo-Klein A, Witkin SS: Prostaglandin E2 enhances and gamma interferon inhibits germ tube formation in Candida albicans. Infect Immun 1990, 58:260-262.
  • [66]Pelletier S, Dubé J, Villeneuve A, Gobeil F Jr, Yang Q, Battistini B, Guillemette G, Sirois P: Prostaglandin E2 increases cyclic AMP and inhibits endothelin-1 production/secretion by guinea-pig tracheal epithelial cells through EP4 receptors. Br J Pharmacol 2001, 132:999-1008.
  • [67]Rooney PJ, Klein BS: Linking fungal morphogenesis with virulence. Cell Microbiol 2002, 4:127-137.
  • [68]Ramage G, Saville SP, Thomas DP, López-Ribot JL: Candida biofilms: an update. Eukaryot Cell 2005, 4:633-638.
  • [69]Bhatt RK, Falck JR, Nigam S: Enantiospecific total synthesis of a novel arachidonic acid metabolite 3-hydroxy eicosatetraenoic acid. Tet Lett 1998, 39:249-252.
  • [70]Nigam S, Kumar SG, Kock JLF: Biological effects of 3-HETE, a novel compound of the yeast Dipodascopsis uninucleata, on mammalian cells. 10th International Conference on Prostaglandins and Related Compounds, Vienna, Austria. 1996.
  • [71]Nigam S, Schewe T, Kock JLF: 3(R)-Hydroxy oxylipins-a novel family of oxygenated polyenoic fatty acids of fungal origin. Adv Exp Med Biol 1999, 469:663-668.
  • [72]Ciccoli R, Sahi S, Singh S, Prakash H, Zafiriou MP, Ishdorj G, Kock JLF, Nigam S: Oxygenation by COX-2 (cyclo-oxygenase-2) of 3-HETE (3-hydroxyeicosatetraenoic acid), a fungal mimetic of arachidonic acid, produces a cascade of novel bioactive 3- hydroxyeicosanoids. J Biochem 2005, 390:737-747.
  • [73]Deva R, Shankaranarayanan P, Ciccoli R, Nigam S: Candida albicans induces selectively transcriptional activation of cyclooxygenase-2 in HeLa cells: Pivotal roles of toll-like receptors, p38 mitogen-activated protein kinase, and NF-κB. J Immunol 2003, 171:3047-3055.
  • [74]Brooks PM, Day RO: Nonsteroidal antiinflammatory drugs-differences and similarities. Engl J Med 1991, 324:1716-1725.
  • [75]Kock JLF, Sebolai OM, Pohl CH, van Wyk PWJ, Lodolo EJ: Oxylipin studies expose aspirin as antifungal. FEMS Yeast Res 2007, 7:1207-1217.
  • [76]Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Harrison DE: Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 2008, 7:641-650.
  • [77]de Quadros AU, Bini D, Pereira PAT, Moroni EG, Monteiro MC: Antifungal activity of some cyclooxygenase inhibitors on Candida albicans: PGE2-dependent mechanism. Folia Microbiol 2011, 56:349-352.
  文献评价指标  
  下载次数:4次 浏览次数:3次