期刊论文详细信息
Journal of Neuroinflammation
A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis
V Wee Yong1  Jade Pui-Wai Tong1  Janet Wang1  Claudia Silva1  Smriti M Agrawal1 
[1] Departments of Clinical Neurosciences and Oncology, Hotchkiss Brain Institute and the, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
关键词: Neurotoxicity;    Neuroinflammation T cell proliferation;    Multiple sclerosis;    Matrix metalloproteinases;    Function-blocking antibody;    Extracellular matrix metalloproteinase inducer;    Experimental autoimmune encephalomyelitis;   
Others  :  1212696
DOI  :  10.1186/1742-2094-9-64
 received in 2011-12-22, accepted in 2012-02-27,  发布年份 2012
PDF
【 摘 要 】

Background

Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin) is an inducer of the expression of several matrix metalloproteinases (MMPs). We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE).

Methods

To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies.

Results

Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9) production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control.

Conclusions

We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS.

【 授权许可】

   
2012 Agrawal et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614102252770.pdf 3792KB PDF download
Figure 7. 180KB Image download
Figure 6. 95KB Image download
Figure 5. 90KB Image download
Figure 4. 104KB Image download
Figure 3. 120KB Image download
Figure 2. 24KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Fossum S, Mallett S, Barclay AN: The MRC OX-47 antigen is a member of the immunoglobulin superfamily with an unusual transmembrane sequence. Eur J Immunol 1991, 21:671-679.
  • [2]Miyauchi T, Masuzawa Y, Muramatsu T: The basigin group of the immunoglobulin superfamily: complete conservation of a segment in and around transmembrane domains of human and mouse basigin and chicken HT7 antigen. J Biochem 1991, 110:770-774.
  • [3]Kasinrerk W, Fiebiger E, Stefanova I, Baumruker T, Knapp W, Stockinger H: Human leukocyte activation antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule. J Immunol 1992, 149:847-854.
  • [4]Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, Kataoka H, Nabeshima K: The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 1995, 55:434-439.
  • [5]Weidle UH, Scheuer W, Eggle D, Klostermann S, Stockinger H: Cancer-related issues of CD147. CANCER GENOMICS PROTEOMICS 2010, 7:157-169.
  • [6]Yurchenko V, Constant S, Eisenmesser E, Bukrinsky M: Cyclophilin-CD147 interactions: a new target for anti-inflammatory therapeutics. Clin Exp Immunol 2010, 160:305-317.
  • [7]Toole BP, Slomiany MG: Hyaluronan, CD44 and Emmprin: partners in cancer cell chemoresistance. Drug Resist Updat 2008, 11:110-121.
  • [8]Biswas C, Nugent MA: Membrane association of collagenase stimulatory factor(s) from B-16 melanoma cells. J Cell Biochem 1987, 35:247-258.
  • [9]Seulberger H, Unger CM, Risau W: HT7, Neurothelin, Basigin, gp42 and OX-47-many names for one developmentally regulated immuno-globulin-like surface glycoprotein on blood-brain barrier endothelium, epithelial tissue barriers and neurons. Neurosci Lett 1992, 140:93-97.
  • [10]Fadool JM, Linser PJ: 5A11 antigen is a cell recognition molecule which is involved in neuronal-glial interactions in avian neural retina. Dev Dyn 1993, 196:252-262.
  • [11]Schlosshauer B, Bauch H, Frank R: Neurothelin: amino acid sequence, cell surface dynamics and actin colocalization. Eur J Cell Biol 1995, 68:159-166.
  • [12]Nehme CL, Fayos BE, Bartles JR: Distribution of the integral plasma membrane glycoprotein CE9 (MRC OX-47) among rat tissues and its induction by diverse stimuli of metabolic activation. Biochem J 1995, 310(Pt 2):693-698.
  • [13]Altruda F, Cervella P, Gaeta ML, Daniele A, Giancotti F, Tarone G, Stefanuto G, Silengo L: Cloning of cDNA for a novel mouse membrane glycoprotein (gp42): shared identity to histocompatibility antigens, immunoglobulins and neural-cell adhesion molecules. Gene 1989, 85:445-451.
  • [14]Guo H, Zucker S, Gordon MK, Toole BP, Biswas C: Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J Biol Chem 1997, 272:24-27.
  • [15]Naruhashi K, Kadomatsu K, Igakura T, Fan QW, Kuno N, Muramatsu H, Miyauchi T, Hasegawa T, Itoh A, Muramatsu T, Nabeshima T: Abnormalities of sensory and memory functions in mice lacking Bsg gene. Biochem Biophys Res Commun 1997, 236:733-737.
  • [16]Igakura T, Kadomatsu K, Kaname T, Muramatsu H, Fan QW, Miyauchi T, Toyama Y, Kuno N, Yuasa S, Takahashi M, Senda T, Taguchi O, Yamamura K, Arimura K, Muramatsu T: A null mutation in basigin, an immunoglobulin superfamily member, indicates its important roles in peri-implantation development and spermatogenesis. Dev Biol 1998, 194:152-165.
  • [17]Kuno N, Kadomatsu K, Fan QW, Hagihara M, Senda T, Mizutani S, Muramatsu T: Female sterility in mice lacking the basigin gene, which encodes a transmembrane glycoprotein belonging to the immunoglobulin superfamily. FEBS Lett 1998, 425:191-194.
  • [18]Schlosshauer B, Herzog KH: Neurothelin: an inducible cell surface glycoprotein of blood-brain barrier-specific endothelial cells and distinct neurons. J Cell Biol 1990, 110:1261-1274.
  • [19]Renno T, Wilson A, Dunkel C, Coste I, Maisnier-Patin K, Renno T, Wilson A, Dunkel C, Coste I, Maisnier-Patin K, Benoit de Coignac A, Aubry JP, Lees RK, Bonnefoy JY, MacDonald HR, Gauchat JF: A role for CD147 in thymic development. J Immunol 2002, 168:4946-4950.
  • [20]Hori K, Katayama N, Kachi S, Kondo M, Kadomatsu K, Usukura J, Muramatsu T, Mori S, Miyake Y: Retinal dysfunction in basigin deficiency. Investig Ophthalmol Vis Sci 2000, 41:3128-3133.
  • [21]Ochrietor JD, Moroz TP, van Ekeris L, Clamp MF, Jefferson SC, deCarvalho AC, Fadool JM, Wistow G, Muramatsu T, Linser PJ: Retina-specific expression of 5A11/Basigin-2, a member of the immunoglobulin gene superfamily. Investig Ophthalmol Vis Sci 2003, 44:4086-4096.
  • [22]Toft-Hansen H, Buist R, Sun XJ, Schellenberg A, Peeling J, Owens T: Metalloproteinases control brain inflammation induced by pertussis toxin in mice overexpressing the chemokine CCL2 in the central nervous system. J Immunol 2006, 177:7242-7249.
  • [23]Agrawal S, Anderson P, Durbeej M, van Rooijen N, Ivars F, Opdenakker G, Sorokin L: Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 2006, 203:1007-1019.
  • [24]Mun-Bryce S, Rosenberg GA: Gelatinase B modulates selective opening of the blood-brain barrier during inflammation. Am J Physiol 1998, 274:R1203-R1211.
  • [25]Agrawal SM, Silva C, Tourtellotte WW, Yong VW: EMMPRIN: a novel regulator of leukocyte transmigration into the CNS in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci 2011, 31:669-677.
  • [26]Hiraishi K, Ide T, Jimma F, Ohi H, Inokuchi F, Miyauchi T, Suzuki K: Immunohistochemical distribution of human basigin by using a novel monoclonal antibody. Acta Histochem Cytochem 2003, 36:135-144.
  • [27]Miyauchi T, Kanekura T, Yamaoka A, Ozawa M, Miyazawa S, Muramatsu T: Basigin, a new, broadly distributed member of the immunoglobulin superfamily, has strong homology with both the immunoglobulin V domain and the beta-chain of major histocompatibility complex class II antigen. J Biochem 1990, 107:316-323.
  • [28]Chabot S, Williams G, Yong VW: Microglial production of TNF-alpha is induced by activated T lymphocytes. Involvement of VLA-4 and inhibition by interferonbeta-1b. J Clin Invest 1997, 100:604-612.
  • [29]Giuliani F, Goodyer CG, Antel JP, Yong VW: Vulnerability of human neurons to T cell-mediated cytotoxicity. J Immunol 2003, 171:368-379.
  • [30]Vecil GG, Larsen PH, Corley SM, Herx LM, Besson A, Goodyer CG, Yong VW: Interleukin-1 is a key regulator of matrix metalloproteinase-9 expression in human neurons in culture and following mouse brain trauma in vivo. J Neurosci Res 2000, 61:212-224.
  • [31]Weaver A, Goncalves da Silva A, Nuttall RK, Edwards DR, Shapiro SD, Rivest S, Yong VW: An elevated matrix metalloproteinase (MMP) in an animal model of multiple sclerosis is protective by affecting Th1/Th2 polarization. FASEB J 2005, 19:1668-1670.
  • [32]Haile Y, Simmen KC, Pasichnyk D, Touret N, Simmen T, Lu JQ, Bleackley RC, Giuliani F: Granule-derived granzyme B mediates the vulnerability of human neurons to T cell-induced neurotoxicity. J Immunol 2011, 187:4861-4872.
  • [33]Larochelle C, Alvarez JI, Prat A: How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 2011, 585:3770-3780.
  • [34]Hartung H-P, Kieseier BC: The role of matrix metalloproteinases in autoimmune damage to the central and peripheral nervous system. J Neuroimmunol 2000, 107:140-147.
  • [35]Yong VW, Power C, Forsyth P, Edwards DR: Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2001, 2:502-511.
  • [36]Opdenakker G, Van Damme J: Probing cytokines, chemokines and matrix metalloproteinases towards better immunotherapies of multiple sclerosis. Cytokine Growth Factor Rev 2011, 22:359-365.
  • [37]Yong VW, Zabad RK, Agrawal S, Goncalves Dasilva A, Metz LM: Elevation of matrix metalloproteinases (MMPs) in multiple sclerosis and impact of immunomodulators. J Neurol Sci 2007, 259(1-2):79-84.
  • [38]Rosenberg GA: MMPs in neuroinflammation. Glia 2002, 39:279-291.
  • [39]Toft-Hansen H, Nuttall RK, Edwards DR, Owens T: Key metalloproteinases are expressed by specific cell types in experimental autoimmune encephalomyelitis. J Immunol 2004, 173:5209-5218.
  • [40]Buhler LA, Samara R, Guzman E, Wilson CL, Krizanac-Bengez L, Janigro D, Ethell DW: Matrix metalloproteinase-7 facilitates immune access to the CNS in experimental autoimmune encephalomyelitis. BMC Neurosci 2009, 10:17. BioMed Central Full Text
  • [41]Folgueras AR, Fueyo A, García-Suárez O, Cox J, Astudillo A, Tortorella P, Campestre C, Gutiérrez-Fernández A, Fanjul-Fernández M, Pennington CJ, Edwards DR, Overall CM, López-Otín C: Collagenase-2 deficiency or inhibition impair experimental autoimmune encephalomyelitis in mice. J Biol Chem 2008, 283(14):9465-9474.
  • [42]Dubois B, Masure S, Hurtenbach U, Paemen L, Heremans H, van den Oord J, Sciot R, Meinhardt T, Hammerling G, Opdenakker G, Arnold B: Resistance of young gelatinase B-deficient mice to experimental autoimmune encephalomyelitis and necrotizing tail lesions. J Clin Invest 1999, 104:1507-1515.
  • [43]Biswas C: Tumor cell stimulation of collagenase production by fibroblasts. Biochem Biophys Res Commun 1982, 109:1026-1034.
  • [44]Biswas C: Matrix influence on the tumor cell stimulation of fibroblast collagenase production. J Cell Biochem 1985, 28:39-45.
  • [45]Ku XM, Liao CG, Li Y, Yang XM, Yang B, Yao XY, Wang L, Kong LM, Zhao P, Chen ZN: Epitope mapping of series of monoclonal antibodies against the hepatocellular carcinoma-associated antigen HAb18G/CD147. Scand J Immunol 2007, 65:435-443.
  • [46]Tang W, Chang SB, Hemler ME: Links between CD147 function, glycosylation, and caveolin-1. Mol Biol Cell 2004, 15:4043-4050.
  • [47]Ellis SM, Nabeshima K, Biswas C: Monoclonal antibody preparation and purification of a tumor cell collagenase-stimulatory factor. Cancer Res 1989, 49:3385-3391.
  • [48]Dean N, Helman E, Aldridge J, Carroll W, Magnuson S, Rosenthal E: Anti-EMMPRIN treatment of HNSCC in an ex vivo model. Laryngoscope 2010, 120(Suppl 4):S146.
  • [49]Dean NR, Knowles JA, Helman EE, Aldridge JC, Carroll WR, Magnuson JS, Clemons L, Ziober B, Rosenthal EL: Anti-EMMPRIN antibody treatment of head and neck squamous cell carcinoma in an ex-vivo model. Anti Cancer Drugs 2010, 21:861-867.
  • [50]Wu L, Yang YF, Ge NJ, Shen SQ, Liang J, Wang Y, Zhou WP, Shen F, Wu MC: Hepatic arterial iodine-131-labeled metuximab injection combined with chemoembolization for unresectable hepatocellular carcinoma: interim safety and survival data from 110 patients. Cancer Biother Radiopharm 2010, 25:657-663.
  • [51]Sun J, Hemler ME: Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res 2001, 61:2276-2281.
  • [52]Haile Y, Pasychniyk D, Turner D, Bleackley RC, Giuliani F: CD4 + CD25 + CD127dimFoxp3+ T cells are cytotoxic for human neurons. J Leukoc Biol 2011, 89:927-934.
  文献评价指标  
  下载次数:29次 浏览次数:6次