期刊论文详细信息
Cell Division
Cyclin K goes with Cdk12 and Cdk13
Dalibor Blazek2  Jiri Kohoutek1 
[1] Department of Toxicology, Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic;Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
关键词: FANCD2;    FANCI;    ATR;    BRCA1;    Phosphorylation of serine 2;    CTD kinase;    CTD code;    Cyclin L;    P-TEFb;    DNA damage;    Posttranscriptional processing;    Transcription;   
Others  :  811601
DOI  :  10.1186/1747-1028-7-12
 received in 2012-03-25, accepted in 2012-04-18,  发布年份 2012
PDF
【 摘 要 】

The cyclin-dependent kinases (Cdks) regulate many cellular processes, including the cell cycle, neuronal development, transcription, and posttranscriptional processing. To perform their functions, Cdks bind to specific cyclin subunits to form a functional and active cyclin/Cdk complex. This review is focused on Cyclin K, which was originally considered an alternative subunit of Cdk9, and on its newly identified partners, Cdk12 and Cdk13. We briefly summarize research devoted to each of these proteins. We also discuss the proteins' functions in the regulation of gene expression via the phosphorylation of serine 2 in the C-terminal domain of RNA polymerase II, contributions to the maintenance of genome stability, and roles in the onset of human disease and embryo development.

【 授权许可】

   
2012 Kohoutek and Blazek; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709070006752.pdf 369KB PDF download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G, Morgan DO, Tsai LH, Wolgemuth DJ: Cyclin-dependent kinases: a family portrait. Nat Cell Biol 2009, 11(11):1275-1276.
  • [2]Satyanarayana A, Kaldis P: Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 2009, 28(33):2925-2939.
  • [3]Malumbres M, Barbacid M: Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009, 9(3):153-166.
  • [4]Buratowski S: Progression through the RNA polymerase II CTD cycle. Mol Cell 2009, 36(4):541-546.
  • [5]Blazek D, Kohoutek J, Bartholomeeusen K, Johansen E, Hulinkova P, Luo Z, Cimermancic P, Ule J, Peterlin BM: The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev 2011, 25(20):2158-2172.
  • [6]Bartkowiak B, Liu P, Phatnani HP, Fuda NJ, Cooper JJ, Price DH, Adelman K, Lis JT, Greenleaf AL: CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev 2010, 24(20):2303-2316.
  • [7]Blazek D: The cyclin K/Cdk12 complex: An emerging new player in the maintenance of genome stability. Cell Cycle 2012, 11:(6):1049-1050.
  • [8]Buratowski S: The CTD code. Nat Struct Biol 2003, 10(9):679-680.
  • [9]Zeitlinger J, Stark A, Kellis M, Hong JW, Nechaev S, Adelman K, Levine M, Young RA: RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 2007, 39(12):1512-1516.
  • [10]Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger J, Adelman K: RNA polymerase is poised for activation across the genome. Nat Genet 2007, 39(12):1507-1511.
  • [11]Pandit S, Wang D, Fu XD: Functional integration of transcriptional and RNA processing machineries. Curr Opin Cell Biol 2008, 20(3):260-265.
  • [12]Perales R, Bentley D: "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 2009, 36(2):178-191.
  • [13]Moore MJ, Proudfoot NJ: Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 2009, 136(4):688-700.
  • [14]Wood A, Shilatifard A: Bur1/Bur2 and the Ctk complex in yeast: the split personality of mammalian P-TEFb. Cell Cycle 2006, 5(10):1066-1068.
  • [15]Edwards MC, Wong C, Elledge SJ: Human cyclin K, a novel RNA polymerase II-associated cyclin possessing both carboxy-terminal domain kinase and Cdk-activating kinase activity. Mol Cell Biol 1998, 18(7):4291-4300.
  • [16]Fu TJ, Peng J, Lee G, Price DH, Flores O: Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. J Biol Chem 1999, 274(49):34527-34530.
  • [17]Peng J, Zhu Y, Milton JT, Price DH: Identification of multiple cyclin subunits of human P-TEFb. Genes Dev 1998, 12(5):755-762.
  • [18]Wei P, Garber ME, Fang SM, Fischer WH, Jones KA: A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 1998, 92(4):451-462.
  • [19]Price DH: P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 2000, 20(8):2629-2634.
  • [20]Peterlin BM, Price DH: Controlling the elongation phase of transcription with P-TEFb. Mol Cell 2006, 23(3):297-305.
  • [21]Garber ME, Wei P, KewalRamani VN, Mayall TP, Herrmann CH, Rice AP, Littman DR, Jones KA: The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev 1998, 12(22):3512-3527.
  • [22]Lin X, Taube R, Fujinaga K, Peterlin BM: P-TEFb containing cyclin K and Cdk9 can activate transcription via RNA. J Biol Chem 2002, 277(19):16873-16878.
  • [23]Barboric M, Lenasi T, Chen H, Johansen EB, Guo S, Peterlin BM: 7SK snRNP/P-TEFb couples transcription elongation with alternative splicing and is essential for vertebrate development. Proc Natl Acad Sci USA 2009, 106(19):7798-7803.
  • [24]Bezstarosti K, Ghamari A, Grosveld FG, Demmers JA: Differential proteomics based on 18O labeling to determine the cyclin dependent kinase 9 interactome. J Proteome Res 2010, 9(9):4464-4475.
  • [25]Ko TK, Kelly E, Pines J: CrkRS: a novel conserved Cdc2-related protein kinase that colocalises with SC35 speckles. J Cell Sci 2001, 114(Pt 14):2591-2603.
  • [26]Marques F, Moreau JL, Peaucellier G, Lozano JC, Schatt P, Picard A, Callebaut I, Perret E, Geneviere AM: A new subfamily of high molecular mass CDC2-related kinases with PITAI/VRE motifs. Biochem Biophys Res Commun 2000, 279(3):832-837.
  • [27]Even Y, Durieux S, Escande ML, Lozano JC, Peaucellier G, Weil D, Geneviere AM: CDC2L5, a Cdk-like kinase with RS domain, interacts with the ASF/SF2-associated protein p32 and affects splicing in vivo. J Cell Biochem 2006, 99(3):890-904.
  • [28]Chen HH, Wang YC, Fann MJ: Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol Cell Biol 2006, 26(7):2736-2745.
  • [29]Chen HH, Wong YH, Geneviere AM, Fann MJ: CDK13/CDC2L5 interacts with L-type cyclins and regulates alternative splicing. Biochem Biophys Res Commun 2007, 354(3):735-740.
  • [30]Liu J, Kipreos ET: Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): differential conservation of CAKs in yeast and metazoa. Mol Biol Evol 2000, 17(7):1061-1074.
  • [31]Guo Z, Stiller JW: Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs. BMC Genomics 2004, 5:69. BioMed Central Full Text
  • [32]Morgan DO, De Bondt HL: Protein kinase regulation: insights from crystal structure analysis. Curr Opin Cell Biol 1994, 6(2):239-246.
  • [33]Komarnitsky P, Cho EJ, Buratowski S: Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 2000, 14(19):2452-2460.
  • [34]Akhtar MS, Heidemann M, Tietjen JR, Zhang DW, Chapman RD, Eick D, Ansari AZ: TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol Cell 2009, 34(3):387-393.
  • [35]Glover-Cutter K, Larochelle S, Erickson B, Zhang C, Shokat K, Fisher RP, Bentley DL: TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol Cell Biol 2009, 29(20):5455-5464.
  • [36]Tassan JP, Jaquenoud M, Leopold P, Schultz SJ, Nigg EA: Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc Natl Acad Sci USA 1995, 92(19):8871-8875.
  • [37]Rickert P, Seghezzi W, Shanahan F, Cho H, Lees E: Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 1996, 12(12):2631-2640.
  • [38]Shore SM, Byers SA, Maury W, Price DH: Identification of a novel isoform of Cdk9. Gene 2003, 307:175-182.
  • [39]Loyer P, Trembley JH, Grenet JA, Busson A, Corlu A, Zhao W, Kocak M, Kidd VJ, Lahti JM: Characterization of cyclin L1 and L2 interactions with CDK11 and splicing factors: influence of cyclin L isoforms on splice site selection. J Biol Chem 2008, 283(12):7721-7732.
  • [40]Ji Y, Xiao F, Sun L, Qin J, Shi S, Yang J, Liu Y, Zhou D, Zhao J, Shen A: Increased expression of CDK11p58 and cyclin D3 following spinal cord injury in rats. Mol Cell Biochem 2008, 309(1-2):49-60.
  • [41]Dickinson LA, Edgar AJ, Ehley J, Gottesfeld JM: Cyclin L is an RS domain protein involved in pre-mRNA splicing. J Biol Chem 2002, 277(28):25465-25473.
  • [42]Baek K, Brown RS, Birrane G, Ladias JA: Crystal structure of human cyclin K, a positive regulator of cyclin-dependent kinase 9. J Mol Biol 2007, 366(2):563-573.
  • [43]Sudol M, Sliwa K, Russo T: Functions of WW domains in the nucleus. FEBS Lett 2001, 490(3):190-195.
  • [44]Fisher RP: Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci 2005, 118(Pt 22):5171-5180.
  • [45]Morgan DO: Principles of CDK regulation. Nature 1995, 374(6518):131-134.
  • [46]Hertel KJ, Graveley BR: RS domains contact the pre-mRNA throughout spliceosome assembly. Trends Biochem Sci 2005, 30(3):115-118.
  • [47]Long JC, Caceres JF: The SR protein family of splicing factors: master regulators of gene expression. Biochem J 2009, 417(1):15-27.
  • [48]Mortillaro MJ, Blencowe BJ, Wei X, Nakayasu H, Du L, Warren SL, Sharp PA, Berezney R: A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc Natl Acad Sci USA 1996, 93(16):8253-8257.
  • [49]de la Mata M, Alonso CR, Kadener S, Fededa JP, Blaustein M, Pelisch F, Cramer P, Bentley D, Kornblihtt AR: A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 2003, 12(2):525-532.
  • [50]de la Mata M, Kornblihtt AR: RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat Struct Mol Biol 2006, 13(11):973-980.
  • [51]Berro R, Pedati C, Kehn-Hall K, Wu W, Klase Z, Even Y, Geneviere AM, Ammosova T, Nekhai S, Kashanchi F: CDK13, a new potential human immunodeficiency virus type 1 inhibitory factor regulating viral mRNA splicing. J Virol 2008, 82(14):7155-7166.
  • [52]Ball LJ, Kuhne R, Schneider-Mergener J, Oschkinat H: Recognition of proline-rich motifs by protein-protein-interaction domains. Angew Chem Int Ed Engl 2005, 44(19):2852-2869.
  • [53]Sims RJ III, Belotserkovskaya R, Reinberg D: Elongation by RNA polymerase II: the short and long of it. Genes Dev 2004, 18(20):2437-2468.
  • [54]Fuda NJ, Ardehali MB, Lis JT: Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 2009, 461(7261):186-192.
  • [55]Lenasi T, Barboric M: P-TEFb stimulates transcription elongation and pre-mRNA splicing through multilateral mechanisms. RNA Biol 2010, 7(2):145-150.
  • [56]Egloff S, Murphy S: Cracking the RNA polymerase II CTD code. Trends Genet 2008, 24(6):280-288.
  • [57]Phatnani HP, Greenleaf AL: Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 2006, 20(21):2922-2936.
  • [58]Hsin JP, Sheth A, Manley JL: RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing. Science 2011, 334(6056):683-686.
  • [59]Palancade B, Bensaude O: Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur J Biochem 2003, 270(19):3859-3870.
  • [60]Chapman RD, Heidemann M, Albert TK, Mailhammer R, Flatley A, Meisterernst M, Kremmer E, Eick D: Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 2007, 318(5857):1780-1782.
  • [61]Jones JC, Phatnani HP, Haystead TA, MacDonald JA, Alam SM, Greenleaf AL: C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats. J Biol Chem 2004, 279(24):24957-24964.
  • [62]Allison LA, Wong JK, Fitzpatrick VD, Moyle M, Ingles CJ: The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function. Mol Cell Biol 1988, 8(1):321-329.
  • [63]Bartkowiak B, Greenleaf AL: Phosphorylation of RNAPII: To P-TEFb or not to P-TEFb? Transcription 2011, 2(3):115-119.
  • [64]Chao SH, Price DH: Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 2001, 276(34):31793-31799.
  • [65]Nechaev S, Adelman K: Promoter-proximal Pol II: when stalling speeds things up. Cell Cycle 2008, 7(11):1539-1544.
  • [66]Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, Sharp PA, Young RA: c-Myc regulates transcriptional pause release. Cell 2010, 141(3):432-445.
  • [67]Cho EJ, Kobor MS, Kim M, Greenblatt J, Buratowski S: Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev 2001, 15(24):3319-3329.
  • [68]Liu Y, Warfield L, Zhang C, Luo J, Allen J, Lang WH, Ranish J, Shokat KM, Hahn S: Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol Cell Biol 2009, 29(17):4852-4863.
  • [69]Qiu H, Hu C, Hinnebusch AG: Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol Cell 2009, 33(6):752-762.
  • [70]Ahn SH, Kim M, Buratowski S: Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing. Mol Cell 2004, 13(1):67-76.
  • [71]Kim H, Erickson B, Luo W, Seward D, Graber JH, Pollock DD, Megee PC, Bentley DL: Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat Struct Mol Biol 2010, 17(10):1279-1286.
  • [72]Bataille AR, Jeronimo C, Jacques PE, Laramee L, Fortin ME, Forest A, Bergeron M, Hanes SD, Robert F: A Universal RNA Polymerase II CTD Cycle Is Orchestrated by Complex Interplays between Kinase, Phosphatase, and Isomerase Enzymes along Genes. Mol Cell 2012, 45(2):158-170.
  • [73]Jackson SP, Bartek J: The DNA-damage response in human biology and disease. Nature 2009, 461(7267):1071-1078.
  • [74]Ciccia A, Elledge SJ: The DNA damage response: making it safe to play with knives. Mol Cell 2010, 40(2):179-204.
  • [75]Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, et al.: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007, 316(5828):1160-1166.
  • [76]Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC, Guan A, Hesley JA, Miller SC, Cromwell EF, Solow-Cordero DE, et al.: A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell 2009, 35(2):228-239.
  • [77]Cimprich KA, Cortez D: ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 2008, 9(8):616-627.
  • [78]Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald ER III, Hurov KE, Luo J, Ballif BA, Gygi SP, Hofmann K, D'Andrea AD, et al.: Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 2007, 129(2):289-301.
  • [79]Moldovan GL, D'Andrea AD: How the fanconi anemia pathway guards the genome. Annu Rev Genet 2009, 43:223-249.
  • [80]Harper JW, Elledge SJ: The DNA damage response: ten years after. Mol Cell 2007, 28(5):739-745.
  • [81]O'Connell BC, Adamson B, Lydeard JR, Sowa ME, Ciccia A, Bredemeyer AL, Schlabach M, Gygi SP, Elledge SJ, Harper JW: A Genome-wide Camptothecin Sensitivity Screen Identifies a Mammalian MMS22L-NFKBIL2 Complex Required for Genomic Stability. Mol Cell 2010, 40(4):645-657.
  • [82]Munoz MJ, de la Mata M, Kornblihtt AR: The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends Biochem Sci 2010, 35(9):497-504.
  • [83]Ostapenko D, Solomon MJ: Budding yeast CTDK-I is required for DNA damage-induced transcription. Eukaryot Cell 2003, 2(2):274-283.
  • [84]Yu DS, Zhao R, Hsu EL, Cayer J, Ye F, Guo Y, Shyr Y, Cortez D: Cyclin-dependent kinase 9-cyclin K functions in the replication stress response. EMBO Rep 2010, 11(11):876-882.
  • [85]Mori T, Anazawa Y, Matsui K, Fukuda S, Nakamura Y, Arakawa H: Cyclin K as a direct transcriptional target of the p53 tumor suppressor. Neoplasia 2002, 4(3):268-274.
  • [86]Clausing E, Mayer A, Chanarat S, Muller B, Germann SM, Cramer P, Lisby M, Strasser K: The transcription elongation factor Bur1-Bur2 interacts with replication protein A and maintains genome stability during replication stress. J Biol Chem 2010, 285(53):41665-41674.
  • [87]Liu H, Herrmann CH, Chiang K, Sung TL, Moon SH, Donehower LA, Rice AP: 55K isoform of CDK9 associates with Ku70 and is involved in DNA repair. Biochem Biophys Res Commun 2010, 397(2):245-250.
  • [88]The Cancer Research Atlas Genome Network: Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474:(7353):609-615.
  • [89]Kauraniemi P, Barlund M, Monni O, Kallioniemi A: New amplified and highly expressed genes discovered in the ERBB2 amplicon in breast cancer by cDNA microarrays. Cancer Res 2001, 61(22):8235-8240.
  • [90]Kauraniemi P, Kuukasjarvi T, Sauter G, Kallioniemi A: Amplification of a 280-kilobase core region at the ERBB2 locus leads to activation of two hypothetical proteins in breast cancer. Am J Pathol 2003, 163(5):1979-1984.
  • [91]Benusiglio PR, Pharoah PD, Smith PL, Lesueur F, Conroy D, Luben RN, Dew G, Jordan C, Dunning A, Easton DF, et al.: HapMap-based study of the 17q21 ERBB2 amplicon in susceptibility to breast cancer. Br J Cancer 2006, 95(12):1689-1695.
  • [92]Sircoulomb F, Bekhouche I, Finetti P, Adelaide J, Ben Hamida A, Bonansea J, Raynaud S, Innocenti C, Charafe-Jauffret E, Tarpin C, et al.: Genome profiling of ERBB2-amplified breast cancers. BMC Cancer 2010, 10:539. BioMed Central Full Text
  • [93]Zang ZJ, Ong CK, Cutcutache I, Yu W, Zhang SL, Huang D, Ler LD, Dykema K, Gan A, Tao J, et al.: Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing. Cancer Res 2011, 71(1):29-39.
  • [94]Iorns E, Martens-de Kemp SR, Lord CJ, Ashworth A: CRK7 modifies the MAPK pathway and influences the response to endocrine therapy. Carcinogenesis 2009, 30(10):1696-1701.
  • [95]Wilson CA, Ramos L, Villasenor MR, Anders KH, Press MF, Clarke K, Karlan B, Chen JJ, Scully R, Livingston D, et al.: Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas. Nat Genet 1999, 21(2):236-240.
  • [96]Thompson ME, Jensen RA, Obermiller PS, Page DL, Holt JT: Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat Genet 1995, 9(4):444-450.
  • [97]Malcovati L, Della Porta MG, Pietra D, Boveri E, Pellagatti A, Galli A, Travaglino E, Brisci A, Rumi E, Passamonti F, et al.: Molecular and clinical features of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Blood 2009, 114(17):3538-3545.
  • [98]Lapidot-Lifson Y, Patinkin D, Prody CA, Ehrlich G, Seidman S, Ben-Aziz R, Benseler F, Eckstein F, Zakut H, Soreq H: Cloning and antisense oligodeoxynucleotide inhibition of a human homolog of cdc2 required in hematopoiesis. Proc Natl Acad Sci USA 1992, 89(2):579-583.
  • [99]Khan SZ, Mitra D: Cyclin K inhibits HIV-1 gene expression and replication by interfering with cyclin-dependent kinase 9 (CDK9)-cyclin T1 interaction in Nef-dependent manner. J Biol Chem 2011, 286(26):22943-22954.
  • [100]Kulkarni PA, Sano M, Schneider MD: Phosphorylation of RNA polymerase II in cardiac hypertrophy: cell enlargement signals converge on cyclin T/Cdk9. Recent Prog Horm Res 2004, 59:125-139.
  • [101]Lin C, Smith ER, Takahashi H, Lai KC, Martin-Brown S, Florens L, Washburn MP, Conaway JW, Conaway RC, Shilatifard A: AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 2010, 37(3):429-437.
  • [102]Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A, Zhou R, Nesvizhskii A, Chinnaiyan A, Hess JL, et al.: A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 2007, 110(13):4445-4454.
  • [103]Bitoun E, Oliver PL, Davies KE: The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 2007, 16(1):92-106.
  • [104]He N, Liu M, Hsu J, Xue Y, Chou S, Burlingame A, Krogan NJ, Alber T, Zhou Q: HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol Cell 2010, 38(3):428-438.
  • [105]Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, Kiernan R, Benkirane M: HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 2010, 38(3):439-451.
  • [106]Krystof V, Chamrad I, Jorda R, Kohoutek J: Pharmacological targeting of CDK9 in cardiac hypertrophy. Med Res Rev 2010, 30(4):646-666.
  • [107]Chao SH, Fujinaga K, Marion JE, Taube R, Sausville EA, Senderowicz AM, Peterlin BM, Price DH: Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 2000, 275(37):28345-28348.
  • [108]Kohoutek J, Li Q, Blazek D, Luo Z, Jiang H, Peterlin BM: Cyclin T2 is essential for mouse embryogenesis. Mol Cell Biol 2009, 29(12):3280-3285.
  • [109]Westerling T, Kuuluvainen E, Makela TP: Cdk8 is essential for preimplantation mouse development. Mol Cell Biol 2007, 27(17):6177-6182.
  • [110]Brown EJ, Baltimore D: ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 2000, 14(4):397-402.
  • [111]de Klein A, Muijtjens M, van Os R, Verhoeven Y, Smit B, Carr AM, Lehmann AR, Hoeijmakers JH: Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr Biol 2000, 10(8):479-482.
  • [112]Hakem R, de la Pompa JL, Sirard C, Mo R, Woo M, Hakem A, Wakeham A, Potter J, Reitmair A, Billia F, et al.: The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 1996, 85(7):1009-1023.
  • [113]Neumuller RA, Richter C, Fischer A, Novatchkova M, Neumuller KG, Knoblich JA: Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell 2011, 8(5):580-593.
  • [114]Zhu H, Doherty JR, Kuliyev E, Mead PE: CDK9/cyclin complexes modulate endoderm induction by direct interaction with Mix.3/mixer. Dev Dyn 2009, 238(6):1346-1357.
  文献评价指标  
  下载次数:16次 浏览次数:21次