期刊论文详细信息
BMC Cancer
Gene expression profiling reveals activation of the FA/BRCA pathway in advanced squamous cervical cancer with intrinsic resistance and therapy failure
Viorica Nagy1  Ioana Berindan-Neagoe1  Claudia Ordeanu3  Simona Visan2  Laura Maja3  Laura Pop1  Bogdan Fetica3  Sergiu Susman1  Rares Buiga3  Meda Rus3  Nicolae Todor3  Oana Tudoran3  Loredana Balacescu3  Ovidiu Balacescu3 
[1]Iuliu Hatieganu, University of Medicine and Pharmacy, 8 Babes street, 400012 Cluj-Napoca, Romania
[2]Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur street, 400372 Cluj-Napoca, Romania
[3]The Oncology Institute "Prof Dr. Ion Chiricuta", 34-36 Republicii street, 400015 Cluj-Napoca, Romania
关键词: Treatment response;    Microarray;    Cervical cancer;    BRIP1;    BRCA1;    RAD51;    FANCD2;   
Others  :  858911
DOI  :  10.1186/1471-2407-14-246
 received in 2013-08-12, accepted in 2014-04-03,  发布年份 2014
PDF
【 摘 要 】

Background

Advanced squamous cervical cancer, one of the most commonly diagnosed cancers in women, still remains a major problem in oncology due to treatment failure and distant metastasis. Antitumor therapy failure is due to both intrinsic and acquired resistance; intrinsic resistance is often decisive for treatment response. In this study, we investigated the specific pathways and molecules responsible for baseline therapy failure in locally advanced squamous cervical cancer.

Methods

Twenty-one patients with locally advanced squamous cell carcinoma were enrolled in this study. Primary biopsies harvested prior to therapy were analyzed for whole human gene expression (Agilent) based on the patient’s 6 months clinical response. Ingenuity Pathway Analysis was used to investigate the altered molecular function and canonical pathways between the responding and non-responding patients. The microarray results were validated by qRT-PCR and immunohistochemistry. An additional set of 24 formalin-fixed paraffin-embedded cervical cancer samples was used for independent validation of the proteins of interest.

Results

A 2859-gene signature was identified to distinguish between responder and non-responder patients. ‘DNA Replication, Recombination and Repair’ represented one of the most important mechanisms activated in non-responsive cervical tumors, and the ‘Role of BRCA1 in DNA Damage Response’ was predicted to be the most significantly altered canonical pathway involved in intrinsic resistance (p = 1.86E-04, ratio = 0.262). Immunohistological staining confirmed increased expression of BRCA1, BRIP1, FANCD2 and RAD51 in non-responsive compared with responsive advanced squamous cervical cancer, both in the initial set of 21 cervical cancer samples and the second set of 24 samples.

Conclusions

Our findings suggest that FA/BRCA pathway plays an important role in treatment failure in advanced cervical cancer. The assessment of FANCD2, RAD51, BRCA1 and BRIP1 nuclear proteins could provide important information about the patients at risk for treatment failure.

【 授权许可】

   
2014 Balacescu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724054342651.pdf 2016KB PDF download
260KB Image download
64KB Image download
50KB Image download
92KB Image download
108KB Image download
【 图 表 】

【 参考文献 】
  • [1]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011, 61:69-90.
  • [2]Lippert TH, Ruoff HJ, Volm M: Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung 2008, 58:261-264.
  • [3]American Cancer Society: Cancer Facts & Figures 2012. Atlanta: American Cancer Society; 2012.
  • [4]Branzei D, Foiani M: Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 2008, 9:297-308.
  • [5]Zempolich K, Fuhrman C, Milash B, Flinner R, Greven K, Ryu J, Forbes A, Kerlin K, Nichols RC, Gaffney DK: Changes in gene expression induced by chemoradiation in advanced cervical carcinoma: a microarray study of RTOG C-0128. Gynecol Oncol 2008, 109:275-279.
  • [6]Wong YF, Selvanayagam ZE, Wei N, Porter J, Vittal R, Hu R, Lin Y, Liao J, Shih JW, Cheung TH, Lo KW, Yim SF, Yip SK, Ngong DT, Siu N, Chan LK, Chan CS, Kong T, Kutlina E, McKinnon RD, Denhardt DT, Chin KV, Chung TK: Expression genomics of cervical cancer: molecular classification and prediction of radiotherapy response by DNA microarray. Clin Cancer Res 2003, 9:5486-5492.
  • [7]Chao A, Wang TH, Lai CH: Overview of microarray analysis of gene expression and its applications to cervical cancer investigation. Taiwan J Obstet Gynecol 2007, 46:363-373.
  • [8]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25:402-408.
  • [9]Tuominen VJ, Ruotoistenmaki S, Viitanen A, Jumppanen M, Isola J: ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res 2010, 12:R56. BioMed Central Full Text
  • [10]Rosner B: Fundamentals of biostatistics. 6th edition. Pacific Grove, CA: Duxbury Press; 2006.
  • [11]Zou KH, Liu A, Bandos AI, Ohno-Machado L, Rockette HE: Statistical evaluation of Diagnostic performance topics in ROC Analysis. Boca Raton, Florida: Chapman & Hall/CRC Press; 2012.
  • [12]Bamber D: The area above the ordinal dominance graph and the area below the receiver operating characteristics graph. J Math Psychol 1975, 12:387-415.
  • [13]Hanley JA, McNeil BJ: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiol 1982, 143:29-36.
  • [14]Kauffmann A, Rosselli F, Lazar V, Winnepenninckx V, Mansuet-Lupo A, Dessen P, van den Oord JJ, Spatz A, Sarasin A: High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene 2008, 27:565-573.
  • [15]Sanchez-Carbayo M, Socci ND, Lozano J, Saint F, Cordon-Cardo C: Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol 2006, 24:778-789.
  • [16]Rigakos G, Razis E: BRCAness: finding the Achilles heel in ovarian cancer. Oncologist 2012, 17:956-962.
  • [17]Roy R, Chun J, Powell SN: BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 2012, 12:68-78.
  • [18]Zhang Y, Fan S, Meng Q, Ma Y, Katiyar P, Schlegel R, Rosen EM: BRCA1 interaction with human papillomavirus oncoproteins. J Biol Chem 2005, 280:33165-33177.
  • [19]Wysham WZ, Mhawech-Fauceglia P, Li H, Hays L, Syriac S, Skrepnik T, Wright J, Pande N, Hoatlin M, Pejovic T: BRCAness profile of sporadic ovarian cancer predicts disease recurrence. PLoS One 2012, 7:e30042.
  • [20]Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J: BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 2000, 14:927-939.
  • [21]Kerr P, Ashworth A: New complexities for BRCA1 and BRCA2. Curr Biol 2001, 11:R668-R676.
  • [22]Jensen RB, Ozes A, Kim T, Estep A, Kowalczykowski SC: BRCA2 is epistatic to the RAD51 paralogs in response to DNA damage. DNA Repair (Amst) 2013, 12:306-311.
  • [23]Kim H, D’Andrea AD: Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev 2012, 26:1393-1408.
  • [24]Wang W: Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 2007, 8:735-748.
  • [25]Alpi AF, Patel KJ: Monoubiquitylation in the Fanconi anemia DNA damage response pathway. DNA Repair (Amst) 2009, 8:430-435.
  • [26]Kelsall IR, Langenick J, MacKay C, Patel KJ, Alpi AF: The Fanconi anaemia components UBE2T and FANCM are functionally linked to nucleotide excision repair. PLoS One 2012, 7:e36970.
  • [27]Williams SA, Longerich S, Sung P, Vaziri C, Kupfer GM: The E3 ubiquitin ligase RAD18 regulates ubiquitylation and chromatin loading of FANCD2 and FANCI. Blood 2011, 117:5078-5087.
  • [28]Svendsen JM, Smogorzewska A, Sowa ME, O’Connell BC, Gygi SP, Elledge SJ, Harper JW: Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 2009, 138:63-77.
  • [29]Fekairi S, Scaglione S, Chahwan C, Taylor ER, Tissier A, Coulon S, Dong MQ, Ruse C, Yates JR 3rd, Russell P, Fuchs RP, McGowan CH, Gaillard PH: Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 2009, 138:78-89.
  • [30]Narayan G, Arias-Pulido H, Nandula SV, Basso K, Sugirtharaj DD, Vargas H, Mansukhani M, Villella J, Meyer L, Schneider A, Gissmann L, Dürst M, Pothuri B, Murty VV: Promoter hypermethylation of FANCF: disruption of Fanconi Anemia-BRCA pathway in cervical cancer. Cancer Res 2004, 64:2994-2997.
  • [31]Jacquemont C, Simon JA, D’Andrea AD, Taniguchi T: Non-specific chemical inhibition of the Fanconi anemia pathway sensitizes cancer cells to cisplatin. Mol Cancer 2012, 11:26. BioMed Central Full Text
  • [32]Henning W, Sturzbecher HW: Homologous recombination and cell cycle checkpoints: Rad51 in tumour progression and therapy resistance. Toxicology 2003, 193:91-109.
  • [33]Du LQ, Wang Y, Wang H, Cao J, Liu Q, Fan FY: Knockdown of Rad51 expression induces radiation- and chemo-sensitivity in osteosarcoma cells. Med Oncol 2011, 28:1481-1487.
  • [34]Richardson C: RAD51, genomic stability, and tumorigenesis. Cancer Lett 2005, 218:127-139.
  • [35]Tennstedt P, Fresow R, Simon R, Marx A, Terracciano L, Petersen C, Sauter G, Dikomey E, Borgmann K: RAD51 overexpression is a negative prognostic marker for colorectal adenocarcinoma. Int J Cancer 2013, 132:2118-2126.
  • [36]Hannay JA, Liu J, Zhu QS, Bolshakov SV, Li L, Pisters PW, Lazar AJ, Yu D, Pollock RE, Lev D: Rad51 overexpression contributes to chemoresistance in human soft tissue sarcoma cells: a role for p53/activator protein 2 transcriptional regulation. Mol Cancer Ther 2007, 6:1650-1660.
  • [37]Barbano R, Copetti M, Perrone G, Pazienza V, Muscarella LA, Balsamo T, Storlazzi CT, Ripoli M, Rinaldi M, Valori VM, Latiano TP, Maiello E, Stanziale P, Carella M, Mangia A, Pellegrini F, Bisceglia M, Muda AO, Altomare V, Murgo R, Fazio VM, Parrella P: High RAD51 mRNA expression characterize estrogen receptor-positive/progesteron receptor-negative breast cancer and is associated with patient's outcome. Int J Cancer 2011, 129:536-545.
  • [38]Qiao GB, Wu YL, Yang XN, Zhong WZ, Xie D, Guan XY, Fischer D, Kolberg HC, Kruger S, Stuerzbecher HW: High-level expression of Rad51 is an independent prognostic marker of survival in non-small-cell lung cancer patients. Br J Cancer 2005, 93:137-143.
  • [39]Russell JS, Brady K, Burgan WE, Cerra MA, Oswald KA, Camphausen K, Tofilon PJ: Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res 2003, 63:7377-7383.
  • [40]Hine CM, Seluanov A, Gorbunova V: Use of the Rad51 promoter for targeted anti-cancer therapy. Proc Natl Acad Sci U S A 2008, 105:20810-20815.
  • [41]Yelamos J, Schreiber V, Dantzer F: Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol Med 2008, 14:169-178.
  • [42]Wang X, Weaver DT: The ups and downs of DNA repair biomarkers for PARP inhibitor therapies. Am J Cancer Res 2011, 1:301-327.
  • [43]Sandhu SK, Yap TA, de Bono JS: The emerging role of poly (ADP-Ribose) polymerase inhibitors in cancer treatment. Curr Drug Targets 2011, 12:2034-2044.
  • [44]Fyles AW, Pintilie M, Kirkbride P, Levin W, Manchul LA, Rawlings GA: Prognostic factors in patients with cervix cancer treated by radiation therapy: results of a multiple regression analysis. Radiother Oncol 1995, 35:107-117.
  • [45]Narayan K, Fisher R, Bernshaw D: Significance of tumor volume and corpus uteri invasion in cervical cancer patients treated by radiotherapy. Int J Gynecol Cancer 2006, 16:623-630.
  • [46]Grigiene R, Valuckas KP, Aleknavicius E, Kurtinaitis J, Letautiene SR: The value of prognostic factors for uterine cervical cancer patients treated with irradiation alone. BMC Cancer 2007, 7:234. BioMed Central Full Text
  文献评价指标  
  下载次数:53次 浏览次数:27次