期刊论文详细信息
Journal of Therapeutic Ultrasound
Full-wave acoustic and thermal modeling of transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: a feasibility study
Niels Kuster2  Gábor Székely2  Beat Werner3  Esra Neufeld1  Adamos Kyriakou2 
[1] Foundation for Research on Information Technologies in Society (IT’IS), Zeughausstrasse 43, Zürich 8004, Switzerland;Swiss Federal Institute of Technology (ETH) Zürich, Rämistrasse 101, Zürich 8092, Switzerland;Center for MR-Research, University Children’s Hospital, Steinwiesstrasse 75, Zürich 8032, Switzerland
关键词: Treatment planning framework;    Aberration correction;    Treatment envelope;    Focusing;    Transcranial focused ultrasound;    Thermal modeling;    Acoustic modeling;   
Others  :  1221437
DOI  :  10.1186/s40349-015-0032-9
 received in 2014-12-29, accepted in 2015-07-05,  发布年份 2015
PDF
【 摘 要 】

Background

Transcranial focused ultrasound (tcFUS) is an attractive noninvasive modality for neurosurgical interventions. The presence of the skull, however, compromises the efficiency of tcFUS therapy, as its heterogeneous nature and acoustic characteristics induce significant distortion of the acoustic energy deposition, focal shifts, and thermal gain decrease. Phased-array transducers allow for partial compensation of skull-induced aberrations by application of precalculated phase and amplitude corrections.

Methods

An integrated numerical framework allowing for 3D full-wave, nonlinear acoustic and thermal simulations has been developed and applied to tcFUS. Simulations were performed to investigate the impact of skull aberrations, the possibility of extending the treatment envelope, and adverse secondary effects. The simulated setup comprised an idealized model of the ExAblate Neuro and a detailed MR-based anatomical head model. Four different approaches were employed to calculate aberration corrections (analytical calculation of the aberration corrections disregarding tissue heterogeneities; a semi-analytical ray-tracing approach compensating for the presence of the skull; two simulation-based time-reversal approaches with and without pressure amplitude corrections which account for the entire anatomy). These impact of these approaches on the pressure and temperature distributions were evaluated for 22 brain-targets

Results

While (semi-)analytical approaches failed to induced high pressure or ablative temperatures in any but the targets in the close vicinity of the geometric focus, simulation-based approaches indicate the possibility of considerably extending the treatment envelope (including targets below the transducer level and locations several centimeters off the geometric focus), generation of sharper foci, and increased targeting accuracy. While the prediction of achievable aberration correction appears to be unaffected by the detailed bone-structure, proper consideration of inhomogeneity is required to predict the pressure distribution for given steering parameters

Conclusions

Simulation-based approaches to calculate aberration corrections may aid in the extension of the tcFUS treatment envelope as well as predict and avoid secondary effects (standing waves, skull heating). Due to their superior performance, simulationbased techniques may prove invaluable in the amelioration of skull-induced aberration effects in tcFUS therapy. The next steps are to investigate shear-wave-induced effects in order to reliably exclude secondary hot-spots, and to develop comprehensive uncertainty assessment and validation procedures.

【 授权许可】

   
2015 Kyriakou et al.

【 预 览 】
附件列表
Files Size Format View
20150731091231910.pdf 2066KB PDF download
Fig. 7. 78KB Image download
Fig. 6. 86KB Image download
Fig. 5. 77KB Image download
Fig. 4. 91KB Image download
Fig. 3. 33KB Image download
Fig. 2. 37KB Image download
20140713031018301.pdf 450KB PDF download
【 图 表 】

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]McDannold N, Clement G, Black P, Jolesz F, Hynynen K. Transcranial MRI-guided focused ultrasound surgery of brain tumors: initial findings in three patients. Neurosurgery. 2010; 66(2):323.
  • [2]Coluccia D, Fandino J, Schwyzer L, O’Gorman R, Remonda L, Anon J et al.. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound. J Ther Ultrasound. 2014; 2(1):17.
  • [3]Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B. High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol. 2009; 66(6):858-61.
  • [4]Jeanmonod D, Werner B, Morel A, Michels L, Zadicario E, Schiff G et al.. Transcranial magnetic resonance imaging–guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus. 2012; 32(1):1.
  • [5]Elias WJ, Huss D, Voss T, Loomba J, Khaled M, Zadicario E et al.. A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2013; 369(7):640-8.
  • [6]Moser D, Zadicario E, Schiff G, Jeanmonod D. Measurement of targeting accuracy in focused ultrasound functional neurosurgery: technical note. Neurosurg Focus. 2012; 32(1):2.
  • [7]Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M et al.. MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol. 2013; 12(5):462-8.
  • [8]Monteith S, Sheehan J, Medel R, Wintermark M, Eames M, Snell J et al.. Potential intracranial applications of magnetic resonance-guided focused ultrasound surgery: a review. J Neurosurg. 2013; 118(2):215-21.
  • [9]Alexandrov AV, Molina CA, Grotta JC, Garami Z, Ford SR, Alvarez-Sabin J et al.. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med. 2004; 351(21):2170-8.
  • [10]Daffertshofer M, Gass A, Ringleb P, Sitzer M, Sliwka U, Els T et al.. Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: results of a phase II clinical trial. Stroke. 2005; 36(7):1441-6.
  • [11]Selvaraj P, Okita K, Matsumoto Y, Voie A, Hoelscher T, Weiss H et al.. Effects of physical properties of the skull on high intensity focused ultrasound for transcranial sonothrombolysis. J Acoustical Soc Am. 2011; 130(4):2538.
  • [12]Weiss HL, Ahadi G, Hoelscher T, Szeri AJ. Cavitation damage during sonothrombolysis using high intensity focused ultrasound. J Acoustical Soc Am. 2011; 129(4):2576.
  • [13]Monteith SJ, Harnof S, Medel R, Popp B, Wintermark M, Lopes MBS et al.. Minimally invasive treatment of intracerebral hemorrhage with magnetic resonance-guided focused ultrasound: laboratory investigation. J Neurosurg. 2013; 118(5):1035-45.
  • [14]Jordão JF, Ayala-Grosso CA, Markham K, Huang Y, Chopra R, McLaurin J et al.. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid- β plaque load in the TgCRND8 mouse model of alzheimer’s disease. PLoS One. 2010; 5(5):10549.
  • [15]Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA et al.. Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg. 2006; 105(3):445-54.
  • [16]Reinhard M, Hetzel A, Krüger S, Kretzer S, Talazko J, Ziyeh S et al.. Blood-brain barrier disruption by low-frequency ultrasound. Stroke. 2006; 37(6):1546-8.
  • [17]Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng. 2007; 9:527-65.
  • [18]Yoo SS, Bystritsky A, Lee JH, Zhang Y, Fischer K, Min BK et al.. Focused ultrasound modulates region-specific brain activity. Neuroimage. 2011; 56(3):1267-75.
  • [19]Bystritsky A, Korb AS, Douglas PK, Cohen MS, Melega WP, Mulgaonkar AP et al.. A review of low-intensity focused ultrasound pulsation. Brain Stimul. 2011; 4(3):125-36.
  • [20]Tufail Y, Yoshihiro A, Pati S, Li MM, Tyler WJ. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat Protoc. 2011; 6(9):1453-70.
  • [21]Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A et al.. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014; 17(2):322-9.
  • [22]Hynynen K. Mri-guided focused ultrasound treatments. Ultrasonics. 2010; 50(2):221-9.
  • [23]Hayat A. Tumors of the Central Nervous System, V.3, Pt.1. Springer, New York; 2011.
  • [24]Fry F, Barger J. Acoustical properties of the human skull. J Acoust Soc Am. 1978; 63:1576.
  • [25]Szabó TL. Diagnostic ultrasound imaging: inside out. Academic Press, Waltham; 2004.
  • [26]Pichardo S, Sin VW, Hynynen K. Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls. Phys Med Biol. 2011; 56(1):219.
  • [27]Clement G, Hynynen K. A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol. 2002; 47(8):1219.
  • [28]Kyriakou A, Neufeld E, Werner B, Paulides MM, Szekely G, Kuster N. A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound. Int J Hyperthermia. 2014; 30(1):36-46.
  • [29]Christ A, Kainz W, Hahn EG, Honegger K, Zefferer M, Neufeld E et al.. The virtual family—development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol. 2010; 55(2):23.
  • [30]Gosselin MC, Neufeld E, Moser H, Huber E, Farcito S, Gerber L et al.. Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0. Phys Med Biol. 2014; 59(18):5287.
  • [31]Hallaj IM, Cleveland RO. Fdtd simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound. J Acoust Soc Am. 1999; 105(5):7-12.
  • [32]Ginter S, Liebler M, Steiger E, Dreyer T, Riedlinger RE. Full-wave modeling of therapeutic ultrasound: nonlinear ultrasound propagation in ideal fluids. J Acoust Soc Am. 2002; 111:2049.
  • [33]Pinton GF, Trahey GE. A comparison of time-domain solutions for the full-wave equation and the parabolic wave equation for a diagnostic ultrasound transducer. IEEE Trans Ultrason, Ferroelectr, Freq Control. 2008; 55(3):730-3.
  • [34]Mast TD, Hinkelman LM, Metlay LA, Orr MJ, Waag RC. Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall. J Acoust Soc Am. 1999; 106:3665.
  • [35]Liebler M, Ginter S, Dreyer T, Riedlinger RE. Full wave modeling of therapeutic ultrasound: efficient time-domain implementation of the frequency power-law attenuation. J Acoust Soc Am. 2004; 116:2742.
  • [36]Westervelt PJ. Parametric acoustic array. J Acoust Soc Am. 1963; 35:535.
  • [37]Pinton G, Aubry JF, Fink M, Tanter M. Numerical prediction of frequency dependent 3D maps of mechanical index thresholds in ultrasonic brain therapy. Med Phys. 2012; 39(1):455-67.
  • [38]Chew WC, Weedon WH. A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw Opt Technol Lett. 1994; 7(13):599-604.
  • [39]Zhou D, Huang W, Xu C, Fang D, Chen B. The perfectly matched layer boundary condition for scalar finite-difference time-domain method. IEEE Photon Technol Lett. 2001; 13(5):454-6.
  • [40]Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948; 1(2):93-122.
  • [41]Nyborg WL. Heat generation by ultrasound in a relaxing medium. J Acoust Soc Am. 1981; 70:310.
  • [42]Kotte A, Van Leeuwen G, Lagendijk J. Modelling the thermal impact of a discrete vessel tree. Phys Med Biol. 1999; 44(1):57.
  • [43]Song WJ, Weinbaum S, Jiji LM. A theoretical model for peripheral tissue heat transfer using the bioheat equation of Weinbaum and Jiji. J Biomech Eng. 1987; 109(1):72-8.
  • [44]Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol. 1984; 10(6):787-800.
  • [45]Neufeld E. High resolution hyperthermia treatment planning. Hartung-Gorre Verlag, Konstanz; 2008.
  • [46]Neufeld E, Kühn S, Szekely G, Kuster N. Measurement, simulation and uncertainty assessment of implant heating during MRI. Phys Med Biol. 2009; 54(13):4151.
  • [47]Hlawitschka M, McGough RJ, Ferrara KW, Kruse DE. Fast ultrasound beam prediction for linear and regular two-dimensional arrays. IEEE Trans Ultrason, Ferroelectr, Freq Control. 2011; 58(9):2001-12.
  • [48]Zhu Y, Szabo TL, McGough RJ. A comparison of ultrasound image simulations with FOCUS and FieldII. Ultrasonics Symposium (IUS), 2012 IEEE International. IEEE, Dresden; 2012.
  • [49]McGough RJ. Rapid calculations of time-harmonic nearfield pressures produced by rectangular pistons. J Acoust Soc Am. 2004; 115:1934.
  • [50]Kelly JF, McGough RJ. A time-space decomposition method for calculating the nearfield pressure generated by a pulsed circular piston. IEEE Trans Ultrason, Ferroelectr, Freq Control. 2006; 53(6):1150-9.
  • [51]Chen D, Kelly JF, McGough RJ. A fast near-field method for calculations of time-harmonic and transient pressures produced by triangular pistons. J Acoust Soc Am. 2006; 120:2450.
  • [52]Chen D, McGough RJ. A 2D fast near-field method for calculating near-field pressures generated by apodized rectangular pistons. J Acoust Soc Am. 2008; 124(3):1526-37.
  • [53]Zeng X, McGough RJ. Optimal simulations of ultrasonic fields produced by large thermal therapy arrays using the angular spectrum approach. J Acoust Soc Am. 2009; 125(5):2967-77.
  • [54]Taflove A, Hagness S. Computational electrodynamics: the finite-difference time-domain method. Artech House, London; 2005.
  • [55]Azhari H. Basics of biomedical ultrasound for engineers. Wiley, Hoboken; 2010.
  • [56]Song J, Pulkkinen A, Huang Y, Hynynen K. Investigation of standing-wave formation in a human skull for a clinical prototype of a large-aperture, transcranial mr-guided focused ultrasound (MRgFUS) phased array: an experimental and simulation study. IEEE Trans Biomed Eng. 2012; 59(2):435-44.
  • [57]Fink M, Prada C, Wu F, Cassereau D. Self focusing with time reversal mirror in inhomogeneous media. In: Proc. IEEE Ultrason. Symp. Montreal, Que: 1989. p. 681–6.
  • [58]Fink M. Time reversal of ultrasonic fields. I. Basic principles. IEEE Trans Ultrason, Ferroelectr, Freq Control. 1992; 39(5):555-66.
  • [59]Fink M, Montaldo G, Tanter M. Time-reversal acoustics in biomedical engineering. Annu Rev Biomed Eng. 2003; 5(1):465-97.
  • [60]El-Brawany M, Nassiri D, Terhaar G, Shaw A, Rivens I, Lozhken K. Measurement of thermal and ultrasonic properties of some biological tissues. J Med Eng Technol. 2009; 33(3):249-56.
  • [61]NCRP. Biological effects of ultrasound: mechanisms and clinical implications. In: Report No. 074 - Biological Effects of Ultrasound: Mechanisms and Clinical Implications. Bethesda, Maryland, USA: National Council on Radiation Protection & Measurements: 1983. . . http://www. [http://www.ncrppublications.org/Reports/074]amazon.com/Biological-Effects-Ultrasound-Mechanisms-Implications/dp/0913392642
  • [62]Bamber J, Hill C. Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature. Ultrasound Med Biol. 1979; 5(2):149-57.
  • [63]Duck FA. Physical properties of tissue: a comprehensive reference book. Academic Press, Waltham; 1990.
  • [64]Goss S, Johnston R, Dunn F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J Acoust Soc Am. 1978; 64:423.
  • [65]Goss S, Frizzell L, Dunn F. Ultrasonic absorption and attenuation in mammalian tissues. Ultrasound Med Biol. 1979; 5(2):181-6.
  • [66]Hasgall PA, Di Gennaro F, Baumgartner C, Neufeld E, Gosselin MC, Payne D, Klingenböck A, Kuster N. IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 2.6, January 13th. 2015. www. itis.ethz.ch/database
  • [67]He X, Bischof JC. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit Rev Biomed Eng. 2003; 31(5–6):355-422.
  • [68]Stauffer P, Goldberg S. Introduction: thermal ablation therapy. Int J Hyperthermia. 2004; 20(7):671-7.
  • [69]Emery AF, Sekins KM. The use of heat transfer principles in designing optimal diathermy and cancer treatment modalities. Int J Heat Mass Tran. 1982; 25(6):823-34.
  • [70]Laakso I, Hirata A. Dominant factors affecting temperature rise in simulations of human thermoregulation during RF exposure. Phys Med Biol. 2011; 56(23):7449.
  • [71]Murbach M, Neufeld E, Capstick M, Kainz W, Brunner DO, Samaras T et al.. Thermal tissue damage model analyzed for different whole-body SAR and scan durations for standard MR body coils. Magn Reson Med. 2014; 71(1):421-31.
  • [72]Suetens P. Fundamentals of medical imaging: Cambridge university press; 2009. ISBN: 9780521519151.
  • [73]Aubry JF, Tanter M, Pernot M, Thomas JL, Fink M. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am. 2003; 113:84.
  • [74]Pulkkinen A, Werner B, Martin E, Hynynen K. Numerical simulations of clinical focused ultrasound functional neurosurgery. Phys Med Biol. 2014; 59(7):1679.
  文献评价指标  
  下载次数:96次 浏览次数:36次