期刊论文详细信息
Journal of Biomedical Science
Caspase 3 involves in neuroplasticity, microglial activation and neurogenesis in the mice hippocampus after intracerebral injection of kainic acid
Young-Ji Shiao3  Fong-Lee Huang1  Tzu-Hsuan Lai5  Chia-Lin Hsu4  Luping Chang4  Huey-Jen Tsay2  Tsai-Teng Tzeng5 
[1] Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan;Institute of Neuroscience, Brain Research Center, school of life science, National Yang-Ming University, Taipei 112, Taiwan;National Research Institute of Chinese Medicine, NO. 155-1. Sec. 2, LiNung St., Peitou, Taipei, Taiwan;Division of Basic Chinease Medicine, National Research Institute of Chinese Medicine, Taipei 112, Taiwan;Institute of Biopharmaceutical Science, National Yang-Ming University, Taipei 112, Taiwan
关键词: Hippocampus;    Neurogenesis;    Gliosis;    Caspase 3;    Neurodegeneration;    Kainic acid;    Epileptogenesis;   
Others  :  821689
DOI  :  10.1186/1423-0127-20-90
 received in 2013-08-13, accepted in 2013-12-02,  发布年份 2013
PDF
【 摘 要 】

Background

The roles of caspase 3 on the kainic acid-mediated neurodegeneration, dendritic plasticity alteration, neurogenesis, microglial activation and gliosis are not fully understood. Here, we investigate hippocampal changes using a mouse model that receive a single kainic acid-intracerebral ventricle injection. The effects of caspase 3 inhibition on these changes were detected during a period of 1 to 7 days post kainic acid injection.

Result

Neurodegeneration was assessed by Fluoro-Jade B staining and neuronal nuclei protein (NeuN) immunostaining. Neurogenesis, gliosis, neuritic plasticity alteration and caspase 3 activation were examined using immunohistochemistry. Dendritic plasticity, cleavvage-dependent activation of calcineurin A and glial fibrillary acidic protein cleavage were analyzed by immunoblotting. We found that kainic acid not only induced neurodegeneration but also arouse several caspase 3-mediated molecular and cellular changes including dendritic plasticity, neurogenesis, and gliosis. The acute caspase 3 activation occurred in pyramidal neurons as well as in hilar interneurons. The delayed caspase 3 activation occurred in astrocytes. The co-injection of caspase 3 inhibitor did not rescue kainic acid-mediated neurodegeneration but seriously and reversibly disturb the structural integrity of axon and dendrite. The kainic acid-induced events include microglia activation, the proliferation of radial glial cells, neurogenesis, and calcineurin A cleavage were significantly inhibited by the co-injection of caspase 3 inhibitor, suggesting the direct involvement of caspase 3 in these events. Alternatively, the kainic acid-mediated astrogliosis is not caspase 3-dependent, although caspase 3 cleavage of glial fibrillary acidic protein occurred.

Conclusions

Our results provide the first direct evidence of a causal role of caspase 3 activation in the cellular changes during kainic acid-mediated excitotoxicity. These findings may highlight novel pharmacological strategies to arrest disease progression and control seizures that are refractory to classical anticonvulsant treatment.

【 授权许可】

   
2013 Tzeng et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712082933202.pdf 2672KB PDF download
Figure 8. 149KB Image download
Figure 7. 68KB Image download
Figure 6. 65KB Image download
Figure 5. 281KB Image download
Figure 4. 241KB Image download
Figure 3. 205KB Image download
Figure 2. 192KB Image download
Figure 1. 279KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Pitkanen A, Sutula TP: Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol 2002, 1:173-181.
  • [2]McNamara JO, Huang YZ, Leonard AS: Molecular signaling mechanisms underlying epileptogenesis. Sci STKE 2006, 2006:re12.
  • [3]Pitkanen A, Kharatishvili I, Karhunen H, Lukasiuk K, Immonen R, Nairismagi J, Grohn O, Nissinen J: Epileptogenesis in experimental models. Epilepsia 2007, 48(Suppl 2):13-20.
  • [4]Rakhade SN, Jensen FE: Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol 2009, 5:380-391.
  • [5]Aroniadou-Anderjaska V, Fritsch B, Qashu F, Braga MF: Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. Epilepsy Res 2008, 78:102-116.
  • [6]Armijo JA, Valdizán EM, De Las Cuevas I, Cuadrado A: Advances in the physiopathology of epileptogenesis: molecular aspects. Rev Neurol 2002, 34:409-429.
  • [7]Bertram E: The relevance of kindling for human epilepsy. Epilepsia 2007, 48(Suppl 2):65-74.
  • [8]Oprica M, Spulber SD, Aronsson AF, Post C, Winblad B, Schultzberg M: The influence of kainic acid on core temperature and cytokine levels in the brain. Cytokine 2006, 35:77-87.
  • [9]Benkovic SA, O’Callaghan JP, Miller DB: Regional neuropathology following kanic acid intoxication in adult and aged C57BL/6J mice. Brain Res 2006, 1070:215-231.
  • [10]Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW: Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol Pathol 2007, 35:984-999.
  • [11]Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE: Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 1998, 31:73-84.
  • [12]Okazaki MM, Molnár P, Nadler JV: Recurrent mossy fiber pathway in rat dentate gyrus: synaptic currents evoked in presence and absence of seizure-induced growth. J Neurophysiol 1999, 81:1645-1660.
  • [13]Sendrowski K, Sobaniec W: Hippocampus, hippocampal sclerosis and epilepsy. Pharmacol Rep 2013, 65:555-565.
  • [14]Parent JM: Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist 2003, 9:261-272.
  • [15]Scharfman HE, McCloskey DP: Postnatal neurogenesis as a therapeutic target in temporal lobe epilepsy. Epilepsy Res 2009, 85:150-161.
  • [16]Shapiro LA, Ribak CE, Jessberger S: Structural changes for adult-born dentate granule cells after status epilepticus. Epilepsia 2008, 5(Suppl 5):13-18.
  • [17]Zhao CS, Overstreet-Wadiche L: Integration of adult generated neurons during epileptogenesis. Epilepsia 2008, 49(Suppl 5):3-12.
  • [18]Scharfman HE, Hen R: Neuroscience. Is more neurogenesis always better? Science 2007, 315:336-338.
  • [19]Kuruba R, Hattiangady B, Shetty AK: Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy. Epilepsy Behav 2009, 14(Suppl 1):65-73.
  • [20]Seifert G, Carmignoto G, Steinhäuser C: Astrocyte dysfunction in epilepsy. Brain Res Rev 2009, 63:212-221.
  • [21]Borges K, McDermott D, Irier H, Smith Y, Dingledine R: Degeneration and proliferation of astrocytes in the mouse dentate gyrus after pilocarpine-induced status epilepticus. Exp Neurol 2006, 201:416-427.
  • [22]Ding S, Fellin T, Zhu Y, Lee SY, Auberson YP, Meaney DF, Coulter DA, Carmignoto G, Haydon PG: Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J Neurosci 2007, 27:10674-10684.
  • [23]Oberheim NA, Tian GF, Han X, Peng W, Takano T, Ransom B, Nedergaard M: Loss of astrocytic domain organization in the epileptic brain. J Neurosci 2008, 28:3264-3276.
  • [24]Gilman CP, Mattson MP: Do apoptotic mechanisms regulate synaptic plasticity and growth-cone motility? Neuromol Med 2002, 2:197-214.
  • [25]Acarin L, Villapol S, Faiz M, Rohn TT, Castellano B, González B: Caspase-3 activation in astrocytes following postnatal excitotoxic damage correlates with cytoskeletal remodeling but not with cell death or proliferation. Glia 2007, 55:954-965.
  • [26]Oomman S, Strahlendorf H, Dertien J, Strahlendorf J: Bergmann glia utilize active caspase-3 for differentiation. Brain Res 2006, 1078:19-34.
  • [27]Fujita K, Yamauchi M, Matsui T, Titani K, Takahashi H, Kato T, Isomura G, Ando M, Nagata Y: Increase of glial fibrillary acidic protein fragments in the spinal cord of motor neuron degeneration mutant mouse. Brain Res 1998, 785:31-40.
  • [28]D’Amelio M, Cavallucci V, Cecconi F: Neuronal caspase-3 signaling: not only cell death. Cell Death Differ 2010, 17:1104-1114.
  • [29]Mouser PE, Head E, Ha KH, Rohn TT: Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer’s disease brain. Am J Pathol 2006, 168:936-946.
  • [30]McLin JP, Steward O: Comparison of seizure phenotype and neurodegeneration induced by systemic kainic acid in inbred, outbred, and hybrid mouse strains. Eur J Neurosci 2006, 24:2191-202.
  • [31]Racine RJ: Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 1972, 32:281-294.
  • [32]Henshall DC, Chen J, Simon RP: Involvement of caspase-3-like protease in the mechanism of cell death following focally evoked limbic seizures. J Neurochem 2000, 74:1215-1223.
  • [33]Narkilahti S, Nissinen J, Pitkänen A: Administration of caspase 3 inhibitor during and after status epilepticus in rat: effect on neuronal damage and epileptogenesis. Neuropharmacology 2003, 44:1068-1088.
  • [34]Schmued LC, Hopkins KJ: Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 2000, 874:123-130.
  • [35]Hopkins KJ, Wang GJ, Schmued LC: Temporal progression of kainic acid induced neuronal and myelin degeneration in the rat forebrain. Brain Res 2000, 864:69-80.
  • [36]Binder LI, Frankfurter A, Rebhun LI: Differential localization of MAP-2 and tau in mammalian neurons in situ. Ann N Y Acad Sci 1986, 466:145-166.
  • [37]Poirier JL, Capek R, De Koninck Y: Differential progression of Dark Neuron and Fluoro-Jade labeling in the rat hippocampus following pilocarpine-induced status epilepticus. Neuroscience 2000, 97:59-68.
  • [38]Ben-Ari Y, Cossart R: Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 2000, 23:580-587.
  • [39]Zhang XM, Zhu J: Kainic acid-induced neurotoxicity: targeting glial responses and glia-derived cytokines. Curr Neuropharmacol 2011, 9:388-398.
  • [40]Vincent P, Mulle C: Kainate receptors in epilepsy and excitotoxicity. Neuroscience 2009, 158:309-323.
  • [41]Ekdahl CT, Kokaia Z, Lindvall O: Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009, 158:1021-1029.
  • [42]Kohman RA, Rhodes JS: Neurogenesis, inflammation and behavior. Brain Behav Immun 2013, 27:22-32.
  • [43]Belarbi K, Rosi S: Modulation of adult-born neurons in the inflamed hippocampus. Front Cell Neurosci 2013, 7:145.
  • [44]Kettenmann H, Kirchhoff F, Verkhratsky A: Microglia: new roles for the synaptic stripper. Neuron 2013, 77:10-18.
  • [45]Wake H, Moorhouse AJ, Miyamoto A, Nabekura J: Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 2013, 36:209-217.
  • [46]Zhang D, Hu X, Qian L, O’Callaghan JP, Hong JS: Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 2010, 41:232-241.
  • [47]Chen Z, Duan RS, Quezada HC, Mix E, Nennesmo I, Adem A, Winblad B, Zhu J: Increased microglial activation and astrogliosis after intranasal administration of kainic acid in C57BL/6 mice. J Neurobiol 2005, 62:207-218.
  • [48]Narkilahti S, Pirttilä TJ, Lukasiuk K, Tuunanen J, Pitkänen A: Expression and activation of caspase 3 following status epilepticus in the rat. Eur J Neurosci 2003, 18:1486-1496.
  • [49]Schindler CK, Pearson EG, Bonner HP, So NK, Simon RP, Prehn JH, Henshall DC: Caspase-3 cleavage and nuclear localization of caspase-activated DNase in human temporal lobe epilepsy. J Cereb Blood Flow Metab 2006, 26:583-589.
  • [50]Chuang YC, Chen SD, Liou CW, Lin TK, Chang WN, Chan SH, Chang AY: Contribution of nitric oxide, superoxide anion, and peroxynitrite to activation of mitochondrial apoptotic signaling in hippocampal CA3 subfield following experimental temporal lobe status epilepticus. Epilepsia 2009, 50:731-746.
  • [51]Nagata S, Nagase H, Kawane K, Mukae N, Fukuyama H: Degradation of chromosomal DNA during apoptosis. Cell Death Diff 2003, 10:108-116.
  • [52]Vaughan AT, Betti CJ, Villalobos MJ: Surviving apoptosis. Apoptosis 2002, 7:173-177.
  • [53]McLaughlin B: The kinder side of killer proteases: caspase activation contributes to neuroprotection and CNS remodeling. Apoptosis 2007, 9:111-121.
  • [54]Kuranaga E, Miura M: Nonapoptotic functions of caspases: caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol 2007, 17:135-144.
  • [55]Wagner DC, Riegelsberger UM, Michalk S, Härtig W, Kranz A, Boltze J: Cleaved caspase-3 expression after experimental stroke exhibits different phenotypes and is predominantly non-apoptotic. Brain Res 2011, 1381:237-242.
  • [56]Fernando P, Brunette S, Megeney LA: Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 2005, 19:1671-1673.
  • [57]Aras R, Barron AM, Pike CJ: Caspase activation contributes to astrogliosis. Brain Res 2012, 1450:102-115.
  • [58]Campbell DS, Holt CE: Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 2003, 37:939-952.
  • [59]Finckbone V, Oomman SK, Strahlendorf HK, Strahlendorf JC: Regional differences in the temporal expression of non-apoptotic caspase-3-positive bergmann glial cells in the developing rat cerebellum. Front Neuroanat 2009, 3:3.
  • [60]Villapol S, Acarin L, Faiz M, Castellano B, Gonzalez B: Distinct spatial and temporal activation of caspase pathways in neurons and glial cells after excitotoxic damage to the immature rat brain. J Neurosci Res 2007, 85:3545-3556.
  • [61]Villapol S, Acarin L, Faiz M, Castellano B, Gonzalez B: Survivin and heat shock protein 25/27 colocalize with cleaved caspase-3 in surviving reactive astrocytes following excitotoxicity to the immature brain. Neuroscience 2008, 153:108-119.
  • [62]Fitzjohn SM, Doherty AJ, Collingridge GL: Promiscuous interactions between AMPA-Rs and MAGUKs. Neuron 2006, 52:222-224.
  • [63]Halpain S, Hipolito A, Saffer L: Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J Neurosci 1998, 18:9835-9844.
  • [64]D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L, Moreno S, Bacci A, Ammassari-Teule M, Marie H, Cecconi F: Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 2011, 14:69-76.
  文献评价指标  
  下载次数:134次 浏览次数:22次