期刊论文详细信息
Cell Division
Phosphorylation of Cdc5 regulates its accumulation
Michael Brandeis2  Kobi J Simpson-Lavy1 
[1] Dept. of Biochemistry and Molecular Genetics, University of Colorado-Denver, 12801 E. 17th Ave, Aurora CO 80045, USA;The Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
关键词: Cdh1;    APC/C;    phosphorylation;    mitosis;    Polo;    Swe1;    Clb2;    Cdc28;    Cdk1;   
Others  :  792792
DOI  :  10.1186/1747-1028-6-23
 received in 2011-09-15, accepted in 2011-12-28,  发布年份 2011
PDF
【 摘 要 】

Background

Cdc5 (polo kinase/Plk1) is a highly conserved key regulator of the S. cerevisiae cell cycle from S-phase until cytokinesis. However, much of the regulatory mechanisms that govern Cdc5 remain to be determined. Cdc5 is phosphorylated on up to 10 sites during mitosis. In this study, we investigated the function of phosphorylation site T23, the only full consensus Cdk1 (Cdc28) phosphorylation site present.

Findings

Cdc5T23A introduces a degron that reduces its cellular amount to undetectable levels, which are nevertheless sufficient for normal cell proliferation. The degron acts in cis and is reversed by N-terminal GFP-tagging. Cdk1 kinase activity is required to maintain Cdc5 levels during G2. This, Cdk1 inhibited, Cdc5 degradation is APC/CCdh1 independent and requires new protein synthesis. Cdc5T23E is hyperactive, and reduces the levels of Cdc5 (in trans) and drastically reduces Clb2 levels.

Conclusions

Phosphorylation of Cdc5 by Cdk1 is required to maintain Cdc5 levels during G2. However, phosphorylation of T23 (probably by Cdk1) caps Cdc5 and other CLB2 cluster protein accumulation, preventing potential protein toxicity, which may arise from their overexpression or from APC/CCdh1 inactivation.

【 授权许可】

   
2011 Simpson-Lavy and Brandeis; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705035926392.pdf 1530KB PDF download
Figure 4. 93KB Image download
Figure 3. 114KB Image download
Figure 2. 55KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Asano S, Park JE, Sakchaisri K, Yu LR, Song S, Supavilai P, Veenstra TD, Lee KS: Concerted mechanism of Swe1/Wee1 regulation by multiple kinases in budding yeast. Embo J 2005, 24:2194-2204.
  • [2]Darieva Z, Bulmer R, Pic-Taylor A, Doris KS, Geymonat M, Sedgwick SG, Morgan BA, Sharrocks AD: Polo kinase controls cell-cycle-dependent transcription by targeting a coactivator protein. Nature 2006, 444:494-498.
  • [3]Park JE, Park CJ, Sakchaisri K, Karpova T, Asano S, McNally J, Sunwoo Y, Leem SH, Lee KS: Novel functional dissection of the localization-specific roles of budding yeast polo kinase Cdc5p. Mol Cell Biol 2004, 24:9873-9886.
  • [4]Snead JL, Sullivan M, Lowery DM, Cohen MS, Zhang C, Randle DH, Taunton J, Yaffe MB, Morgan DO, Shokat KM: A coupled chemical-genetic and bioinformatic approach to Polo-like kinase pathway exploration. Chem Biol 2007, 14:1261-1272.
  • [5]Park CJ, Park JE, Karpova TS, Soung NK, Yu LR, Song S, Lee KH, Xia X, Kang E, Dabanoglu I, Oh DY, Zhang JY, Kang YH, Wincovitch S, Huffaker TC, Veenstra TD, McNally JG, Lee KS: Requirement for the budding yeast polo kinase Cdc5 in proper microtubule growth and dynamics. Eukaryot Cell 2008, 7:444-453.
  • [6]Schleker T, Shimada K, Sack R, Pike BL, Gasser SM: Cell cycle-dependent phosphorylation of Rad53 kinase by Cdc5 and Cdc28 modulates checkpoint adaptation. Cell Cycle 9:350-363.
  • [7]Shirayama M, Zachariae W, Ciosk R, Nasmyth K: The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. Embo J 1998, 17:1336-1349.
  • [8]Hu F, Elledge SJ: Bub2 is a cell cycle regulated phospho-protein controlled by multiple checkpoints. Cell Cycle 2002, 1:351-355.
  • [9]Park CJ, Song S, Lee PR, Shou W, Deshaies RJ, Lee KS: Loss of CDC5 function in Saccharomyces cerevisiae leads to defects in Swe1p regulation and Bfa1p/Bub2p-independent cytokinesis. Genetics 2003, 163:21-33.
  • [10]Yoshida S, Kono K, Lowery DM, Bartolini S, Yaffe MB, Ohya Y, Pellman D: Polo-like kinase Cdc5 controls the local activation of Rho1 to promote cytokinesis. Science 2006, 313:108-111.
  • [11]Rahal R, Amon A: The Polo-like kinase Cdc5 interacts with FEAR network components and Cdc14. Cell Cycle 2008, 7:3262-3272.
  • [12]Visintin C, Tomson BN, Rahal R, Paulson J, Cohen M, Taunton J, Amon A, Visintin R: APC/C-Cdh1-mediated degradation of the Polo kinase Cdc5 promotes the return of Cdc14 into the nucleolus. Genes Dev 2008, 22:79-90.
  • [13]Crasta K, Lim HH, Giddings TH Jr, Winey M, Surana U: Inactivation of Cdh1 by synergistic action of Cdk1 and polo kinase is necessary for proper assembly of the mitotic spindle. Nat Cell Biol 2008, 10:665-675.
  • [14]Cheng L, Hunke L, Hardy CF: Cell cycle regulation of the Saccharomyces cerevisiae polo-like kinase cdc5p. Mol Cell Biol 1998, 18:7360-7370.
  • [15]Zhang T, Nirantar S, Lim HH, Sinha I, Surana U: DNA damage checkpoint maintains CDH1 in an active state to inhibit anaphase progression. Dev Cell 2009, 17:541-551.
  • [16]Mortensen EM, Haas W, Gygi M, Gygi SP, Kellogg DR: Cdc28-dependent regulation of the Cdc5/Polo kinase. Curr Biol 2005, 15:2033-2037.
  • [17]Simpson-Lavy KJ, Sajman J, Zenvirth D, Brandeis M: APC/CCdh1 specific degradation of Hsl1 and Clb2 is required for proper stress responses of S. cerevisiae. Cell Cycle 2009, 8:3003-3009.
  • [18]Charles JF, Jaspersen SL, Tinker-Kulberg RL, Hwang L, Szidon A, Morgan DO: The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae. Curr Biol 1998, 8:497-507.
  • [19]Sakchaisri K, Asano S, Yu LR, Shulewitz MJ, Park CJ, Park JE, Cho YW, Veenstra TD, Thorner J, Lee KS: Coupling morphogenesis to mitotic entry. Proc Natl Acad Sci USA 2004, 101:4124-4129.
  • [20]Darieva Z, Pic-Taylor A, Boros J, Spanos A, Geymonat M, Reece RJ, Sedgwick SG, Sharrocks AD, Morgan BA: Cell cycle-regulated transcription through the FHA domain of Fkh2p and the coactivator Ndd1p. Curr Biol 2003, 13:1740-1745.
  • [21]Pic-Taylor A, Darieva Z, Morgan BA, Sharrocks AD: Regulation of cell cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the forkhead transcription factor Fkh2p. Mol Cell Biol 2004, 24:10036-10046.
  • [22]Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998, 9:3273-3297.
  • [23]Bishop AC, Ubersax JA, Petsch DT, Matheos DP, Gray NS, Blethrow J, Shimizu E, Tsien JZ, Schultz PG, Rose MD, Wood JL, Morgan DO, Shokat KM: A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 2000, 407:395-401.
  • [24]Dial JM, Petrotchenko EV, Borchers CH: Inhibition of APCCdh1 activity by Cdh1/Acm1/Bmh1 ternary complex formation. J Biol Chem 2007, 282:5237-5248.
  • [25]Sopko R, Huang D, Preston N, Chua G, Papp B, Kafadar K, Snyder M, Oliver SG, Cyert M, Hughes TR, Boone C, Andrews B: Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 2006, 21:319-330.
  • [26]Hu F, Gan Y, Aparicio OM: Identification of Clb2 residues required for Swe1 regulation of Clb2-Cdc28 in Saccharomyces cerevisiae. Genetics 2008, 179:863-874.
  文献评价指标  
  下载次数:84次 浏览次数:28次