期刊论文详细信息
Journal of Nanobiotechnology
In-vitro cytotoxicity assessment of carbon-nanodot-conjugated Fe-aminoclay (CD-FeAC) and its bio-imaging applications
Hyun Gyu Park2  Young-Chul Lee5  Mino Yang6  Jouhahn Lee1  Yun Suk Huh7  Ji-Ho Park3  Sung-Jin Chang4  So Young Park1  Moon Il Kim5  Hyun Uk Lee1  Kyoung Suk Kang2 
[1] Advanced Nano-Surface Research Group, Korea Basic Science Institute (KBSI), Daejeon 305-333, Republic of Korea;Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701, Republic of Korea;Department of Bio and Brain Engineering (BK21+ Program), KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701, Republic of Korea;Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea;Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;Division of Analytical Research, Korea Basic Science Institute (KBSI), Gangneung 200-701, Republic of Korea;Department of Biological Engineering, College of Engineering, Inha University, Incheon 402-751, Republic of Korea
关键词: Bio-imaging;    Conjugation;    Cytotoxicity;    Carbon nanodots (CD);    Fe-aminoclay (FeAC);    In-vitro cytotoxicity;   
Others  :  1234082
DOI  :  10.1186/s12951-015-0151-z
 received in 2015-09-10, accepted in 2015-11-18,  发布年份 2015
PDF
【 摘 要 】

We have investigated the cytotoxic assay of Fe-aminoclay (FeAC) nanoparticles (NPs) and simultaneous imaging in HeLa cells by photoluminescent carbon nanodots (CD) conjugation. Non-cytotoxic, photostable, and CD NPs are conjugated with cationic FeAC NPs where CD NPs play a role inbio-imaging and FeAC NPs act as a substrate for CD conjugation and help to uptake of NPs into cancer cells due to positively charged surface of FeAC NPs in physiological media. As increase of CD-FeAC NPs loading in HeLa cell in vitro, it showed slight cytotoxicity at 1000 μg/mL but no cytotoxicity for normal cells up to concentration of 1000 μg/mL confirmed by two 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red (NR) assays, with further observations by 4′,6-diamidino-2-phenylindole (DAPI) stained confocal microscopy images, possessing that CD-FeAC NPs can be used as potential drug delivery platforms in cancer cells with simultaneous imaging.

【 授权许可】

   
2015 Kang et al.

【 预 览 】
附件列表
Files Size Format View
20151127100004139.pdf 8021KB PDF download
Fig.10. 32KB Image download
Fig.9. 157KB Image download
Fig.8. 37KB Image download
Fig.7. 48KB Image download
Fig. 3. 42KB Image download
Fig.5. 31KB Image download
Fig.4. 76KB Image download
Fig.3. 256KB Image download
Fig.2. 92KB Image download
Fig.1. 27KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig. 3.

Fig.7.

Fig.8.

Fig.9.

Fig.10.

【 参考文献 】
  • [1]Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013; 42:1147-1235.
  • [2]Samal SK, Dash M, Vlierberghe SV, Kaplan DL, Chiellini E, van Blitterswijk C et al.. Cationic polymers and their therapeutic potential. Chem Soc Rev. 2012; 41:7147-7194.
  • [3]Hubbell JA, Chilkoti A. Nanomaterials for drug delivery. Science. 2012; 337:303-305.
  • [4]Bansal R, Tripathi SK, Gupta KC, Kumar P. Lipophilic and cationic tiphenylphosphonium grafted linear polyethylenimine polymers for efficient gene delivery to mammalian cells. J Mater Chem. 2012; 22:25427-25436.
  • [5]Liu H, Wang H, Yang W, Cheng Y. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J Am Chem Soc. 2012; 134:17680-17687.
  • [6]ChlopekJ J, Czajkowska B, Szaraniec B, Frackowiak E, Szostak K, Béguin F. In vitro studies of carbon nanotubes biocompatibility. Carbon. 2006; 44:1106-1111.
  • [7]Yu JH, Kwon S-H, Petrášek Z, Park OK, Jun SW, Shin K et al.. High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nat Mater. 2013; 12:359-366.
  • [8]Kang H, Kim S-H, Yang S-M, Park J-H. Bio-inspired nanotadpoles with component-specific functionality. J Mater Chem B. 2014; 2:6462-6466.
  • [9]Lin Y-S, Wu S-H, Hung Y, Chou Y-H, Chang C, Lin M-L et al.. Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous. Chem Mater. 2006; 18:5170-5172.
  • [10]Park W, Yang HN, Ling D, Yim H, Kim KS, Hyeon T et al.. Multi-modal transfection agent based on monodisperse magnetic nanoparticles for stem cell gene delivery and tracking. Biomaterials. 2014; 35:7239-7247.
  • [11]Karakoti AS, Das S, Thevuthasan S, Seal S. PEGylated inorganic nanoparticles. Angew Chem-Int Edit. 2011; 50:1980-1994.
  • [12]Ghosh D, Bagley AF, Na YJ, Birrer MJ, Bhatia SN, Belcher AM. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci USA. 2014; 111:13948-13953.
  • [13]Lim YY, Noh Y-W, Han JH, Cai Q-Y, Yoon K-H, Chung BH. Biocompatible polymer-nanoparticle-based bimodal imaging contrast agents for the labeling and tracking of dendritic cells. Small. 2008; 4:1640-1645.
  • [14]Wan S, Huang J, Guo M, Zhang H, Cao Y, Yan H et al.. Biocompatible superparamagnetic iron oxide nanoparticle dispersions stabilized with poly(ethylene glycol)–oligo(aspartic acid) hybrids. J Biomed Mater Res Part A. 2007; 80A:946-954.
  • [15]Lu X, Jiang R, Yang M, Fan Q, Hu W, Zhang L et al.. Monodispersed grafted conjugated polyelectrolyte-stabilized magnetic nanoparticles as multifunctional platform for cellular imaging and drug delivery. J Mater Chem B. 2014; 2:376-386.
  • [16]Wu Y, Guo R, Wen S, Shen M, Zhu M, Wang J, Shi X. Folic acid-modified laponite nanodisks for targeted anticancer drug delivery. J Mater Chem B. 2014; 2:7410-7418.
  • [17]Thanh NTK, Green LAW. Functionalisation of nanoparticles for biomedical applications. Nano Today. 2010; 5:213-230.
  • [18]Avvakumova S, Colombo M, Tortora P, Prosperi D. Biotechnological approaches toward nanoparticle biofunctionalization. Trends Biotechnol. 2014; 32:11-20.
  • [19]Nanotechnology takes aim at cancer. Science. 2005; 310:1132-1134.
  • [20]Kwon KC, Ryu JH, Lee J-H, Lee EJ, Kwon IC, Kim K et al.. Proteinticle/gold core/shell nanoparticles for targeted cancer therapy without nanotoxicity. Adv Mater. 2014; 26:6436-6441.
  • [21]Burkett SL, Press A, Mann S. Synthesis, characterization, and reactivity of layered inorganic-organic nanocomposites based on 2:1 trioctahedral phyllosilicates. Chem Mater. 1997; 9:1071-1073.
  • [22]Mann S, Burkett SL, Davis SA, Fowler CE, Mendelson NH, Sims SD et al.. Sol-gel synthesis of organized matter. Chem Mater. 1997; 9:2300-2310.
  • [23]Mann S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-euilibrium conditions. Nat Mater. 2009; 8:781-792.
  • [24]Holmström SC, Patil AJ, Butler M, Mann S. Influence of polymer co-intercalation on guest release from aminopropyl-functionalized magnesium phyllosilicate mesolamellar nanocomposites. J Mater Chem. 2007; 17:3894-3900.
  • [25]Lee Y-C, Park W-K, Yang J-W. Removal of anionic metals by amino-organoclay for water treatment. J Hazard Mater. 2011; 190:652-658.
  • [26]Datta KKR, Achari A, Eswaramoorthy M. Aminoclay: a functional layered material with multifaceted applications. J Mater Chem A. 2013; 1:6707-6718.
  • [27]Lee Y-C, Kim EJ, Ko DA, Yang J-W. Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil. J Hazard Mater. 2011; 196:101-108.
  • [28]Lee Y-C, Jin ES, Jung SW, Kim Y-M, Chang KS, Yang J-W et al.. Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides. Sci Rep. 2013; 3:1292(1–8).
  • [29]Han H-K, Lee Y-C, Lee M-Y, Patil AJ, Shin H-J. Magnesium and calcium organophyllosilicates: synthesis and in vitro cytotoxicity study. ACS App Mater Interfaces. 2011; 3:2564-2572.
  • [30]Chaturbedy P, Jagadeesan D, Eswaramoorthy M. pH-sensitive breathing of clay within the polyelectrolyte matrix. ACS Nano. 2010; 4:5921-5929.
  • [31]Yang L, Lee Y-C, Kim MI, Park HG, Huh YS, Shao Y et al.. Biodistribution and clearance of aminoclay nanoparticles: implication for in vivo applicability as a tailor-made drug delivery carrier. J Mater Chem B. 2014; 2:7567-7574.
  • [32]Yang S-T, Cao L, Luo PG, Lu F, Wang X, Wang H et al.. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009; 131:11308-11309.
  • [33]Park SY, Lee HU, Park ES, Lee SC, Lee J-W, Jeong SW et al.. Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl Mater Interfaces. 2014; 6:3365-3370.
  • [34]Lee HU, Park SY, Park ES, Son B, Lee SC, Lee JW et al.. Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells. Sci Rep. 2014; 4:4665(1–7).
  • [35]Reuel NF, Dupont A, Thouvenin O, Lamb DC, Strano MS. Three-dimensional tracking of carbon nanotubes within living cells. ACS Nano. 2012; 6:5420-5428.
  • [36]Zhang J, Kruss S, Hilmer AJ, Shimizu S, Schmois Z, Cruz FDL. A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin T using near-infrared fluorescent single-walled carbon nanotube sensors. Adv Healthc Mater. 2014; 3:412-423.
  • [37]Zheng XT, He HL, Li CM. Multifunctional graphene quantum dots-conjugated titanate nanoflowers for fluorescence-trackable targeted drug delivery. RSC Adv. 2013; 3:24853-24857.
  • [38]Eda G, Lin Y-Y, Mattevi C, Yamaguchi H, Chen H-A, Chen I-S. Blue photoluminescence from chemically derived graphene oxide. Adv Mater. 2010; 22:505-509.
  • [39]Choi BG, Park HS, Park TJ, Yang MH, Kim JS, Jang S-Y. Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano. 2010; 4:2910-2918.
  • [40]Lee Y-C, Kim MI, Woo M-A, Park HG, Han J-I. Effective peroxidase-like activity of a water-solubilized Fe-aminoclay for use in immunoassay. Biosens Bioelectron. 2013; 42:373-378.
  • [41]Lee Y-C, Huh YS, Farooq W, Han J-I, Oh Y-K, Park J-Y. Oil extraction by aminoparticle-based H 2 O 2 activation via wet microalgae harvesting. RSC Adv. 2013; 3:12802-12809.
  • [42]Lee Y-C, Chang S-J, Choi M-H, Jeon T-J, Ryu T, Huh YS. Self-assembled graphene oxide with organo-building blocks of Fe-aminoclay for heterogeneous Fenton-like reaction at near-neutral pH: a batch experiment. Appl Catal B Environ. 2013; 142–143:494-503.
  • [43]Zhu C, Zhai J, Dong S. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem Commun. 2012; 48:9367-9369.
  • [44]Narayanamoorthy B, Balaji S. Physicochemical characterization of amino functionalized clay/Nafion nanocomposite film with embedded platinum nanoparticles for PEM fuel cells. Appl Clay Sci. 2015; 104:66-73.
  • [45]Kim S, Lee Y-C, Cho D-H, Lee HU, Huh YS, Kim G-J et al.. A simple and non-invasive method for nuclear transformation of intact-walled Chlamydomonas Reinhardtii. PLoS One. 2014; 9:e101018(1–9).
  • [46]Vickery JL, Thachepan S, Patil AJ, Mann S. Immobilisation and encapsulation of functional protein–inorganic constructs. Mol BioSyst. 2009; 5:744-749.
  • [47]Patil AJ, Li M, Dujardin E, Mann S. Novel bioinorganic nanostructures based on mesolamellar intercalation or single-molecule wrapping of DNA using organoclay building blocks. Nano Lett. 2007; 7:2660-2665.
  • [48]Choi M-H, Hwang Y, Lee HU, Kim B, Lee G-W, Oh Y-K. Aquatic ecotoxicity effect of engineered aminoclay nanoparticles. Ecotox Environ Safe. 2014; 102:34-41.
  • [49]Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008; 3:1125-1131.
  • [50]López-Lázaro M. Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett. 2007; 252:1-8.
  • [51]Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011; 283:65-87.
  • [52]Xu C, Yuan Z, Kohler N, Kim J, Chung MA. FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc. 2009; 31:15346-15351.
  • [53]Panda JJ, Varsheny A, Chauhan VS. Self-assembled nanoparticles based on modified cationic dipeptides and DNA: novel systems for gene delivery. J Nanobiotechnol. 2013; 11:18(1–13). BioMed Central Full Text
  • [54]Tagalakis AD, Kenny GD, Bienemann AS, McCarthy D, Munye MM, Taylor H et al.. PEGylation improves the receptor-mediated transfection efficiency of peptide-targeted, self-assembling, anionic nanocomplexes. J Control Release. 2014; 174:177-187.
  • [55]Wang Y-H, Fu Y-C, Chiu H-C, Wang C-Z, Lo S-P, Ho M-L et al.. Cationic nanoparticles with quaternary ammonium-functionalized PLGA-PEG-based copolymers for potent gene transfection. J Nanopar Res. 2013; 15:2077(1–16).
  • [56]De P, Balta M, Bedos-Belval F. Cinnamic acid derivatives as anticancer agents: a review. Curr Med Chem. 2011; 18:1672-1703.
  文献评价指标  
  下载次数:122次 浏览次数:22次