期刊论文详细信息
Journal of Neuroinflammation
Exacerbation of CNS inflammation and neurodegeneration by systemic LPS treatment is independent of circulating IL-1β and IL-6
Colm Cunningham1  Donal T Skelly1  Carol L Murray1 
[1] School of Biochemistry and Immunology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Rep. of Ireland
关键词: IL-1β;    Alzheimer's disease;    inflammation;    systemic;    neurodegeneration;    chronic;    dexamethasone;    priming;    microglia;   
Others  :  1213346
DOI  :  10.1186/1742-2094-8-50
 received in 2011-03-24, accepted in 2011-05-17,  发布年份 2011
PDF
【 摘 要 】

Background

Chronic neurodegeneration comprises an inflammatory response but its contribution to the progression of disease remains unclear. We have previously shown that microglial cells are primed by chronic neurodegeneration, induced by the ME7 strain of prion disease, to synthesize limited pro-inflammatory cytokines but to produce exaggerated responses to subsequent systemic inflammatory insults. The consequences of this primed response include exaggerated hypothermic and sickness behavioural responses, acute neuronal death and accelerated progression of disease. Here we investigated whether inhibition of systemic cytokine synthesis using the anti-inflammatory steroid dexamethasone-21-phosphate was sufficient to block any or all of these responses.

Methods

ME7 animals, at 18-19 weeks post-inoculation, were challenged with LPS (500 μg/kg) in the presence or absence of dexamethasone-21-phosphate (2 mg/kg) and effects on core-body temperature and systemic and CNS cytokine production and apoptosis were examined.

Results

LPS induced hypothermia and decreased exploratory activity. Dexamethasone-21-phosphate prevented this hypothermia, markedly suppressed systemic IL-1β and IL-6 secretion but did not prevent decreased exploration. Furthermore, robust transcription of cytokine mRNA occurred in the hippocampus of both ME7 and NBH (normal brain homogenate) control animals despite the effective blocking of systemic cytokine synthesis. Microglia primed by neurodegeneration were not blocked from the robust synthesis of IL-1β protein and endothelial COX-2 was also robustly synthesized. We injected biotinylated LPS at 100 μg/kg and even at this lower dose this could be detected in blood plasma. Apoptosis was acutely induced by LPS, despite the inhibition of the systemic cytokine response.

Conclusions

These data suggest that LPS can directly activate the brain endothelium even at relatively low doses, obviating the need for systemic cytokine stimulation to transduce systemic inflammatory signals into the brain or to exacerbate existing pathology.

【 授权许可】

   
2011 Murray et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614123251116.pdf 12198KB PDF download
Figure 6. 46KB Image download
Figure 5. 36KB Image download
Figure 4. 105KB Image download
Figure 3. 81KB Image download
Figure 2. 54KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Martin BK, Szekely C, Brandt J, Piantadosi S, Breitner JC, Craft S, Evans D, Green R, Mullan M: Cognitive function over time in the Alzheimer's Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol 2008, 65:896-905.
  • [2]Cunningham C, Boche D, Perry VH: Transforming growth factor beta1, the dominant cytokine in murine prion disease: influence on inflammatory cytokine synthesis and alteration of vascular extracellular matrix. Neuropathol Appl Neurobiol 2002, 28:107-119.
  • [3]Walsh DT, Betmouni S, Perry VH: Absence of detectable IL-1beta production in murine prion disease: a model of chronic neurodegeneration. J Neuropathol Exp Neurol 2001, 60:173-182.
  • [4]Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH: Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 2005, 25:9275-9284.
  • [5]Combrinck MI, Perry VH, Cunningham C: Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience 2002, 112:7-11.
  • [6]Cunningham C, Campion S, Lunnon K, Murray CL, Woods JF, Deacon RM, Rawlins JN, Perry VH: Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 2009, 65:304-312.
  • [7]Murray C, Sanderson DJ, Barkus C, Deacon RM, Rawlins JN, Bannerman DM, Cunningham C: Systemic inflammation induces acute working memory deficits in the primed brain: relevance for delirium. Neurobiol Aging (In press)
  • [8]Field R, Campion S, Warren C, Murray C, Cunningham C: Systemic challenge with the TLR3 agonist poly I:C induces amplified IFNalpha/beta and IL-1beta responses in the diseased brain and exacerbates chronic neurodegeneration. Brain Behav Immun 2010, 24:996-1007. 2010
  • [9]Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM: Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J Neurosci 2005, 25:8843-8853.
  • [10]Lee J, Chan SL, Mattson MP: Adverse effect of a Presenilin-1 mutation in microglia results in enhanced nitric oxide and inflammatory cytokine responses to immune challenge in the brain. MeuroMolecular Medicine 2002, 2:29-45.
  • [11]Sly LM, Krzesicki RF, Brashler JR, Buhl AE, McKinley DD, Carter DB, Chin JE: Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer's disease. Brain Res Bull 2001, 56:581-588.
  • [12]Pott Godoy MC, Tarelli R, Ferrari CC, Sarchi MI, Pitossi FJ: Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson's disease. Brain 2008, 131:1880-1894.
  • [13]Villaran RF, Espinosa-Oliva AM, Sarmiento M, De Pablos RM, Arguelles S, Delgado-Cortes MJ, Sobrino V, Van Rooijen N, Venero JL, Herrera AJ, Cano J, Machado A: Ulcerative colitis exacerbates lipopolysaccharide-induced damage to the nigral dopaminergic system: potential risk factor in Parkinson's disease. J Neurochem 2010, 114:1687-1700.
  • [14]Barrientos RM, Higgins EA, Biedenkapp JC, Sprunger DB, Wright-Hardesty KJ, Watkins LR, Rudy JW, Maier SF: Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiol Aging 2006, 27:723-732.
  • [15]Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, Johnson RW: Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. Faseb J 2005, 19:1329-1331.
  • [16]Nguyen MD, D'Aigle T, Gowing G, Julien JP, Rivest S: Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J Neurosci 2004, 24:1340-1349.
  • [17]McColl BW, Rothwell NJ, Allan SM: Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci 2007, 27:4403-4412.
  • [18]Serres S, Anthony DC, Jiang Y, Broom KA, Campbell SJ, Tyler DJ, van Kasteren SI, Davis BG, Sibson NR: Systemic inflammatory response reactivates immune-mediated lesions in rat brain. J Neurosci 2009, 29:4820-4828.
  • [19]Palin K, Cunningham C, Forse P, Perry VH, Platt N: Systemic inflammation switches the inflammatory cytokine profile in CNS Wallerian degeneration. Neurobiol Dis 2008, 30:19-29.
  • [20]Perry VH, Cunningham C, Holmes C: Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 2007, 7:161-167.
  • [21]Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D, Perry VH: Systemic inflammation and disease progression in Alzheimer's disease. Neurology 2009, 73:768-774.
  • [22]Felton LM, Cunningham C, Rankine EL, Waters S, Boche D, Perry VH: MCP-1 and murine prion disease: separation of early behavioural dysfunction from overt clinical disease. Neurobiol Dis 2005, 20:283-295.
  • [23]Cunningham C, Wilcockson DC, Boche D, Perry VH: Comparison of inflammatory and acute-phase responses in the brain and peripheral organs of the ME7 model of prion disease. J Virol 2005, 79:5174-5184.
  • [24]Luk JM, Kumar A, Tsang R, Staunton D: Biotinylated lipopolysaccharide binds to endotoxin receptor in endothelial and monocytic cells. Anal Biochem 1995, 232:217-224.
  • [25]Cunningham C, Campion S, Teeling J, Felton L, Perry VH: The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain Behav Immun 2007, 21:490-502.
  • [26]Teeling JL, Cunningham C, Newman TA, Perry VH: The effect of non-steroidal anti-inflammatory agents on behavioural changes and cytokine production following systemic inflammation: Implications for a role of COX-1. Brain Behav Immun 2010, 24:409-419.
  • [27]Adcock IM, Nasuhara Y, Stevens DA, Barnes PJ: Ligand-induced differentiation of glucocorticoid receptor (GR) trans-repression and transactivation: preferential targetting of NF-kappaB and lack of I-kappaB involvement. Br J Pharmacol 1999, 127:1003-1011.
  • [28]Bruccoleri A, Pennypacker KR, Harry GJ: Effect of dexamethasone on elevated cytokine mRNA levels in chemical-induced hippocampal injury. J Neurosci Res 1999, 57:916-926.
  • [29]De Kloet ER: Why Dexamethasone Poorly Penetrates in Brain. Stress 1997, 2:13-20.
  • [30]Birmingham MK, Sar M, Stumpf WE: Dexamethasone target sites in the central nervous system and their potential relevance to mental illness. Cell Mol Neurobiol 1993, 13:373-386.
  • [31]Meijer OC, de Lange EC, Breimer DD, de Boer AG, Workel JO, de Kloet ER: Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. Endocrinology 1998, 139:1789-1793.
  • [32]Chai Z, Gatti S, Toniatti C, Poli V, Bartfai T: Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1 beta: a study on IL-6-deficient mice. J Exp Med 1996, 183:311-316.
  • [33]Greer GG, Rietschel ET: Lipid A-induced tolerance and hyperreactivity to hypothermia in mice. Infect Immun 1978, 19:357-368.
  • [34]Leon LR: Hypothermia in systemic inflammation: role of cytokines. Front Biosci 2004, 9:1877-1888.
  • [35]Wang J, Ando T, Dunn AJ: Effect of homologous interleukin-1, interleukin-6 and tumor necrosis factor-alpha on the core body temperature of mice. Neuroimmunomodulation 1997, 4:230-236.
  • [36]Teeling JL, Felton LM, Deacon RM, Cunningham C, Rawlins JN, Perry VH: Sub-pyrogenic systemic inflammation impacts on brain and behavior, independent of cytokines. Brain Behav Immun 2007, 21:836-850.
  • [37]Castle M, Comoli E, Loewy AD: Autonomic brainstem nuclei are linked to the hippocampus. Neuroscience 2005, 134:657-669.
  • [38]Ricardo JA, Koh ET: Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 1978, 153:1-26.
  • [39]Singh AK, Jiang Y: How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology 2004, 201:197-207.
  • [40]Chakravarty S, Herkenham M: Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 2005, 25:1788-1796.
  • [41]Banks WA, Robinson SM: Minimal penetration of lipopolysaccharide across the murine blood-brain barrier. Brain Behav Immun 2010, 24:102-109.
  • [42]Nadjar A, Tridon V, May MJ, Ghosh S, Dantzer R, Amedee T, Parnet P: NFkappaB activates in vivo the synthesis of inducible Cox-2 in the brain. J Cereb Blood Flow Metab 2005, 25:1047-1059.
  • [43]Mbonye UR, Song I: Posttranscriptional and posttranslational determinants of cyclooxygenase expression. BMB Rep 2009, 42:552-560.
  • [44]Sadikot RT, Jansen ED, Blackwell TR, Zoia O, Yull F, Christman JW, Blackwell TS: High-dose dexamethasone accentuates nuclear factor-kappa b activation in endotoxin-treated mice. Am J Respir Crit Care Med 2001, 164:873-878.
  • [45]de Pablos RM, Villaran RF, Arguelles S, Herrera AJ, Venero JL, Ayala A, Cano J, Machado A: Stress increases vulnerability to inflammation in the rat prefrontal cortex. J Neurosci 2006, 26:5709-5719.
  • [46]Munhoz CD, Lepsch LB, Kawamoto EM, Malta MB, Lima Lde S, Avellar MC, Sapolsky RM, Scavone C: Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-kappaB in the frontal cortex and hippocampus via glucocorticoid secretion. J Neurosci 2006, 26:3813-3820.
  • [47]Munhoz CD, Sorrells SF, Caso JR, Scavone C, Sapolsky RM: Glucocorticoids exacerbate lipopolysaccharide-induced signaling in the frontal cortex and hippocampus in a dose-dependent manner. J Neurosci 2010, 30:13690-13698.
  • [48]Sorrells SF, Caso JR, Munhoz CD, Sapolsky RM: The stressed CNS: when glucocorticoids aggravate inflammation. Neuron 2009, 64:33-39.
  • [49]Semmler A, Frisch C, Debeir T, Ramanathan M, Okulla T, Klockgether T, Heneka MT: Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol 2007, 204:733-740.
  • [50]D'Mello C, Le T, Swain MG: Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 2009, 29:2089-2102.
  文献评价指标  
  下载次数:15次 浏览次数:2次