期刊论文详细信息
Journal of Orthopaedic Surgery and Research
Mesenchymal stem cells overexpressing Ihh promote bone repair
Hongliang Hu1  Lixin Kan2  Zheng Li1  Yiran Huang1  Xizhi Guo3  Yong Zhu1  Shi Yang1  Pingping Song1  Lingling Zhang3  Ruhui Tian1  Yanan Wang1  Tingting Chen1  Shasha Zou1 
[1] Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai 200135, China;Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago 60611, IL, USA;BIO-X Center, Shanghai Jiao Tong University, 55 Guangyuan West Road, Shanghai 200240, China
关键词: Tissue engineering;    Mesenchymal stem cells (MSCs);    Angiogenesis;    Osteogenesis;    Chondrogenesis;    Indian hedgehog (Ihh);   
Others  :  1151668
DOI  :  10.1186/s13018-014-0102-7
 received in 2014-06-23, accepted in 2014-10-10,  发布年份 2014
PDF
【 摘 要 】

Background

Indian hedgehog (Ihh) signaling pathway is known to play key roles in various aspects of normal endochondral bone development. This study tested the potential roles of high Ihh signaling in the context of injury-induced bone regeneration.

Methods

A rabbit tibia defect model was established to test the effects of the implant of Ihh/mesenchymal stem cells (MSCs)/scaffold complex. Computed tomography (CT), gross observation, and standard histological and immunohistological techniques were used to evaluate the effectiveness of the treatment. In vitro studies with MSCs and C3H10T1/2 cells were also employed to further understand the cellular and molecular mechanisms.

Results

We found that the implanted Ihh/MSCs/scaffold complex promoted bone repair. Consistently, in vitro study found that Ihh induced the upregulation of chondrocytic, osteogenic, and vascular cell markers, both in C3H10T1/2 cells and MSCs.

Conclusions

Our study has demonstrated that high Ihh signaling in a complex with MSCs enhanced bone regeneration effectively in a clinically relevant acute injury model. Even though the exact underlying mechanisms are still far from clear, our primary data suggested that enhanced chondrogenesis, osteogenesis, and angiogenesis of MSCs at least partially contribute to the process. This study not only has implications for basic research of MSCs and Ihh signaling pathway but also points to the possibility of direct application of this specific paradigm to clinical bone repair.

【 授权许可】

   
2014 Zou et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406091916726.pdf 2278KB PDF download
Figure 7. 54KB Image download
Figure 6. 84KB Image download
Figure 5. 65KB Image download
Figure 4. 31KB Image download
Figure 3. 148KB Image download
Figure 2. 72KB Image download
Figure 1. 87KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Giannoudis PV, Dinopoulos H, Tsiridis E: Bone substitutes: an update. Injury 2005, 36(Suppl 3):S20-S27. doi:10.1016/j.injury.2005.07.029
  • [2]Jager M, Westhoff B, Wild A, Krauspe R: [Bone harvesting from the iliac crest]. Orthopade 2005, 34(10):976-982. 984, 986-990, 992-974. doi:10.1007/s00132-005-0839-0
  • [3]Myeroff C, Archdeacon M: Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am 2011, 93(23):2227-2236. doi:10.2106/JBJS.J.01513
  • [4]Kim DH, Rhim R, Li L, Martha J, Swaim BH, Banco RJ, Jenis LG, Tromanhauser SG: Prospective study of iliac crest bone graft harvest site pain and morbidity. Spine J 2009, 9(11):886-892. doi:10.1016/j.spinee.2009.05.006
  • [5]Nguyen LH, Annabi N, Nikkhah M, Bae H, Binan L, Park S, Kang Y, Yang Y, Khademhosseini A: Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng B Rev 2012, 18(5):363-382. doi:10.1089/ten.TEB.2012.0012
  • [6]Grabowski G, Cornett CA: Bone graft and bone graft substitutes in spine surgery: current concepts and controversies. J Am Acad Orthop Surg 2013, 21(1):51-60. doi:10.5435/JAAOS-21-01-51
  • [7]Jun SH, Lee EJ, Jang TS, Kim HE, Jang JH, Koh YH: Bone morphogenic protein-2 (BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med 2013, 24(3):773-782. doi:10.1007/s10856-012-4822-0
  • [8]Santos TC, Morton TJ, Moritz M, Pfeifer S, Reise K, Marques AP, Castro AG, Reis RL, van Griensven M: Vascular endothelial growth factor and fibroblast growth factor-2 incorporation in starch-based bone tissue-engineered constructs promote the in vivo expression of neovascularization mediators. Tissue Eng A 2013, 19(7¿8):834-848. doi:10.1089/ten.TEA.2010.0741
  • [9]Chau M, Forcinito P, Andrade AC, Hegde A, Ahn S, Lui JC, Baron J, Nilsson O: Organization of the Indian hedgehog¿parathyroid hormone-related protein system in the postnatal growth plate. J Mol Endocrinol 2011, 47(1):99-107. doi:10.1530/JME-10-0177
  • [10]Li J, Zhao Q, Wang E, Zhang C, Wang G, Yuan Q: Transplantation of Cbfa1-overexpressing adipose stem cells together with vascularized periosteal flaps repair segmental bone defects. J Surg Res 2012, 176(1):e13-e20. doi:10.1016/j.jss.2011.12.011
  • [11]Ohba S, Hojo H, Chung UI: Bioactive factors for tissue regeneration: state of the art. Muscles Ligaments Tendons J 2012, 2(3):193-203.
  • [12]Virk MS, Alaee F, Tang H, Ominsky MS, Ke HZ, Lieberman JR: Systemic administration of sclerostin antibody enhances bone repair in a critical-sized femoral defect in a rat model. J Bone Joint Surg Am 2013, 95(8):694-701. doi:10.2106/JBJS.L.00285
  • [13]Baht GS, Silkstone D, Nadesan P, Whetstone H, Alman BA: Activation of hedgehog signaling during fracture repair enhances osteoblastic-dependent matrix formation. J Orthop Res 2014, 32(4):581-586. doi:10.1002/jor.22562
  • [14]Lai LP, Mitchell J: Indian hedgehog: its roles and regulation in endochondral bone development. J Cell Biochem 2005, 96(6):1163-1173. doi:10.1002/jcb.20635
  • [15]Joeng KS, Long F: The Gli2 transcriptional activator is a crucial effector for Ihh signaling in osteoblast development and cartilage vascularization. Development 2009, 136(24):4177-4185. doi:10.1242/dev.041624
  • [16]Zou SS, Li Z, Hu HL: Desert hedgehog regulates the proliferation and differentiation of Leydig cells: an update. Zhonghua Nan Ke Xue 2012, 18(2):172-175.
  • [17]Varjosalo M, Taipale J: Hedgehog: functions and mechanisms. Genes Dev 2008, 22(18):2454-2472. doi:10.1101/gad.1693608
  • [18]Delaine-Smith RM, Reilly GC: Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J 2012, 2(3):169-180.
  • [19]Raggi C, Berardi AC: Mesenchymal stem cells, aging and regenerative medicine. Muscles Ligaments Tendons J 2012, 2(3):239-242.
  • [20]Ory DS, Neugeboren BA, Mulligan RC: A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci U S A 1996, 93(21):11400-11406.
  • [21]Horner EA, Kirkham J, Wood D, Curran S, Smith M, Thomson B, Yang XB: Long bone defect models for tissue engineering applications: criteria for choice. Tissue Eng B Rev 2010, 16(2):263-271. doi:10.1089/ten.TEB.2009.0224
  • [22]Toombs JP, Wallace LJ, Bjorling DE, Rowland GN: Evaluation of key's hypothesis in the feline tibia: an experimental model for augmented bone healing studies. Am J Vet Res 1985, 46(2):513-518.
  • [23]Zhang W, Tsurushima H, Oyane A, Yazaki Y, Sogo Y, Ito A, Matsumura A: BMP-2 gene-fibronectin-apatite composite layer enhances bone formation. J Biomed Sci 2011, 18:62. doi:10.1186/1423-0127-18-62 BioMed Central Full Text
  • [24]Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, Vortkamp A: BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 2001, 128(22):4523-4534.
  • [25]Kronenberg HM: PTHrP and skeletal development. Ann N Y Acad Sci 2006, 1068:1-13. doi:10.1196/annals.1346.002
  • [26]Murakami S, Noda M: Expression of Indian hedgehog during fracture healing in adult rat femora. Calcif Tissue Int 2000, 66(4):272-276.
  • [27]Fei Y, Hurley MM: Role of fibroblast growth factor 2 and Wnt signaling in anabolic effects of parathyroid hormone on bone formation. J Cell Physiol 2012, 227(11):3539-3545. doi:10.1002/jcp.24075
  • [28]Duench K, Franz-Odendaal TA: BMP and Hedgehog signaling during the development of scleral ossicles. Dev Biol 2012, 365(1):251-258. doi:10.1016/j.ydbio.2012.02.016
  文献评价指标  
  下载次数:58次 浏览次数:20次