期刊论文详细信息
Longevity & Healthspan
Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan
Heidi A Tissenbaum4  Lesley T MacNeil3  Michael J Gilchrist1  Haibo Liu2  Darryl Conte4  Eun-Soo Kwon5  Ankita Bansal2 
[1] MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK;Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA;Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA;Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA;Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 306-809, Korea
关键词: Isoforms;    Aging;    Transcription;    C. elegans;    DAF-16/FOXO;    Longevity;   
Others  :  802278
DOI  :  10.1186/2046-2395-3-5
 received in 2014-03-20, accepted in 2014-04-04,  发布年份 2014
PDF
【 摘 要 】

Background

Insulin/IGF-1 signaling plays a central role in longevity across phylogeny. In C. elegans, the forkhead box O (FOXO) transcription factor, DAF-16, is the primary target of insulin/IGF-1 signaling, and multiple isoforms of DAF-16 (a, b, and d/f) modulate lifespan, metabolism, dauer formation, and stress resistance. Thus far, across phylogeny modulation of mammalian FOXOs and DAF-16 have focused on post-translational regulation with little focus on transcriptional regulation. In C. elegans, we have previously shown that DAF-16d/f cooperates with DAF-16a to promote longevity. In this study, we generated transgenic strains expressing near-endogenous levels of either daf-16a or daf-16d/f, and examined temporal expression of the isoforms to further define how these isoforms contribute to lifespan regulation.

Results

Here, we show that DAF-16a is sensitive both to changes in gene dosage and to alterations in the level of insulin/IGF-1 signaling. Interestingly, we find that as worms age, the intestinal expression of daf-16d/f but not daf-16a is dramatically upregulated at the level of transcription. Preventing this transcriptional upregulation shortens lifespan, indicating that transcriptional regulation of daf-16d/f promotes longevity. In an RNAi screen of transcriptional regulators, we identify elt-2 (GATA transcription factor) and swsn-1 (core subunit of SWI/SNF complex) as key modulators of daf-16d/f gene expression. ELT-2 and another GATA factor, ELT-4, promote longevity via both DAF-16a and DAF-16d/f while the components of SWI/SNF complex promote longevity specifically via DAF-16d/f.

Conclusions

Our findings indicate that transcriptional control of C. elegans FOXO/daf-16 is an essential regulatory event. Considering the conservation of FOXO across species, our findings identify a new layer of FOXO regulation as a potential determinant of mammalian longevity and age-related diseases such as cancer and diabetes.

【 授权许可】

   
2014 Bansal et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708021825172.pdf 2696KB PDF download
Figure 7. 70KB Image download
Figure 6. 185KB Image download
Figure 5. 151KB Image download
Figure 4. 158KB Image download
Figure 3. 115KB Image download
Figure 2. 178KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Bluher M, Kahn BB, Kahn CR: Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003, 299:572-574.
  • [2]Kenyon CJ: The genetics of ageing. Nature 2010, 464:504-512.
  • [3]Landis JN, Murphy CT: Integration of diverse inputs in the regulation of Caenorhabditis elegans DAF-16/FOXO. Dev Dyn 2010, 239:1405-1412.
  • [4]Yen K, Narasimhan SD, Tissenbaum HA: DAF-16/Forkhead box O transcription factor: many paths to a single Fork(head) in the road. Antioxid Redox Signal 2011, 14:623-634.
  • [5]Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G: daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997, 277:942-946.
  • [6]Morris JZ, Tissenbaum HA, Ruvkun G: A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 1996, 382:536-539.
  • [7]Wolkow CA, Munoz MJ, Riddle DL, Ruvkun G: Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin-like signaling pathway. J Biol Chem 2002, 277:49591-49597.
  • [8]Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G: A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 1999, 13:1438-1452.
  • [9]Paradis S, Ruvkun G: Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 1998, 12:2488-2498.
  • [10]Lin K, Dorman JB, Rodan A, Kenyon C: daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997, 278:1319-1322.
  • [11]Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G: The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997, 389:994-999.
  • [12]Hertweck M, Gobel C, Baumeister R: C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 2004, 6:577-588.
  • [13]Fu Z, Tindall DJ: FOXOs, cancer and regulation of apoptosis. Oncogene 2008, 27:2312-2319.
  • [14]Furuyama T, Nakazawa T, Nakano I, Mori N: Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J 2000, 349:629-634.
  • [15]Hosaka T, Biggs WH 3rd, Tieu D, Boyer AD, Varki NM, Cavenee WK, Arden KC: Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci U S A 2004, 101:2975-2980.
  • [16]Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA: Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 2003, 301:215-218.
  • [17]Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, Miao L, Tothova Z, Horner JW, Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH: FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007, 128:309-323.
  • [18]Kim DH, Perdomo G, Zhang T, Slusher S, Lee S, Phillips BE, Fan Y, Giannoukakis N, Gramignoli R, Strom S, Ringquist S, Dong HH: FoxO6 integrates insulin signaling with gluconeogenesis in the liver. Diabetes 2011, 60:2763-2774.
  • [19]Lee RY, Hench J, Ruvkun G: Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 2001, 11:1950-1957.
  • [20]Lin K, Hsin H, Libina N, Kenyon C: Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 2001, 28:139-145.
  • [21]Kwon ES, Narasimhan SD, Yen K, Tissenbaum HA: A new DAF-16 isoform regulates longevity. Nature 2010, 466:498-502.
  • [22]Essers MA, Weijzen S, de Vries-Smits AM, Saarloos I, de Ruiter ND, Bos JL, Burgering BM: FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 2004, 23:4802-4812.
  • [23]Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA: JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci USA 2005, 102:4494-4499.
  • [24]Wang MC, Bohmann D, Jasper H: JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 2005, 121:115-125.
  • [25]Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A: A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 2006, 125:987-1001.
  • [26]Curtis R, O’Connor G, DiStefano PS: Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell 2006, 5:119-126.
  • [27]Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A: An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 2007, 17:1646-1656.
  • [28]Wolff S, Ma H, Burch D, Maciel GA, Hunter T, Dillin A: SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 2006, 124:1039-1053.
  • [29]Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L: C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 2006, 125:1165-1177.
  • [30]Wang Y, Oh SW, Deplancke B, Luo J, Walhout AJ, Tissenbaum HA: C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO. Mech Ageing Dev 2006, 127:741-747.
  • [31]Fukushige T, Hawkins MG, McGhee JD: The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Dev Biol 1998, 198:286-302.
  • [32]McGhee JD, Fukushige T, Krause MW, Minnema SE, Goszczynski B, Gaudet J, Kohara Y, Bossinger O, Zhao Y, Khattra J, Hirst M, Jones SJ, Marra MA, Ruzanov P, Warner A, Zapf R, Moerman DG, Kalb JM: ELT-2 is the predominant transcription factor controlling differentiation and function of the C. elegans intestine, from embryo to adult. Dev Biol 2009, 327:551-565.
  • [33]Martens JA, Winston F: Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev 2003, 13:136-142.
  • [34]Phelan ML, Sif S, Narlikar GJ, Kingston RE: Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell 1999, 3:247-253.
  • [35]Gilchrist MJ, Zorn AM, Voigt J, Smith JC, Papalopulu N, Amaya E: Defining a large set of full-length clones from a Xenopus tropicalis EST project. Dev Biol 2004, 271:498-516.
  • [36]Gorodkin J, Cirera S, Hedegaard J, Gilchrist MJ, Panitz F, Jorgensen C, Scheibye-Knudsen K, Arvin T, Lumholdt S, Sawera M, Green T, Nielsen BJ, Havgaard JH, Rosenkilde C, Wang J, Li H, Li R, Liu B, Hu S, Dong W, Li W, Yu J, Wang J, Staefeldt HH, Wernersson R, Madsen LB, Thomsen B, Hornshoj H, Bujie Z, Wang X, et al.: Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags. Genome Biol 2007, 8:R45. BioMed Central Full Text
  • [37]Gu W, Lee HC, Chaves D, Youngman EM, Pazour GJ, Conte D Jr, Mello CC: CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell 2012, 151:1488-1500.
  • [38]Stadler M, Artiles K, Pak J, Fire A: Contributions of mRNA abundance, ribosome loading, and post- or peri-translational effects to temporal repression of C. elegans heterochronic miRNA targets. Genome Res 2012, 22:2418-2426.
  • [39]Henderson ST, Johnson TE: daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 2001, 11:1975-1980.
  • [40]Padmanabhan S, Mukhopadhyay A, Narasimhan S, Tesz G, Czech MP, Tissenbaum HA: A PP2A Regulatory subunit regulates C. elegans Insulin/IGF-1 signaling by modulating AKT-1 phosphorylation. Cell 2009, 136:939-951.
  • [41]Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL: Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 1998, 150:129-155.
  • [42]Wightman B, Burglin TR, Gatto J, Arasu P, Ruvkun G: Negative regulatory sequences in the lin-14 3'-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev 1991, 5:1813-1824.
  • [43]Libina N, Berman JR, Kenyon C: Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 2003, 115:489-502.
  • [44]McGhee JD: The C. Elegans Intestine. [WormBook] http://www.wormbook.org/chapters/www_intestine/intestine.html webcite
  • [45]Racher H, Hansen D: Translational control in the C. elegans hermaphrodite germ line. Genome 2010, 53:83-102.
  • [46]Kerry S, Tekippe M, Gaddis NC, Aballay A: GATA transcription factor required for immunity to bacterial and fungal pathogens. PLoS One 2006, 1:e77.
  • [47]Zhang P, Judy M, Lee SJ, Kenyon C: Direct and indirect gene regulation by a life-extending FOXO protein in C. elegans: roles for GATA factors and lipid gene regulators. Cell Metab 2013, 17:85-100.
  • [48]Budovskaya YV, Wu K, Southworth LK, Jiang M, Tedesco P, Johnson TE, Kim SK: An elt-3/elt-5/elt-6 GATA transcription circuit guides aging in C. elegans. Cell 2008, 134:291-303.
  • [49]Tonsaker T, Pratt RM, McGhee JD: Re-evaluating the role of ELT-3 in a GATA transcription factor circuit proposed to guide aging in C. elegans. Mech Ageing Dev 2012, 133:50-53.
  • [50]Euskirchen G, Auerbach RK, Snyder M: SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions. J Biol Chem 2012, 287:30897-30905.
  • [51]Sawa H, Kouike H, Okano H: Components of the SWI/SNF complex are required for asymmetric cell division in C. elegans. Mol Cell 2000, 6:617-624.
  • [52]Hayes GD, Riedel CG, Ruvkun G: The Caenorhabditis elegans SOMI-1 zinc finger protein and SWI/SNF promote regulation of development by the mir-84 microRNA. Genes Dev 2011, 25:2079-2092.
  • [53]Cui M, Fay DS, Han M: lin-35/Rb cooperates with the SWI/SNF complex to control Caenorhabditis elegans larval development. Genetics 2004, 167:1177-1185.
  • [54]Riedel CG, Dowen RH, Lourenco GF, Kirienko NV, Heimbucher T, West JA, Bowman SK, Kingston RE, Dillin A, Asara JM, Ruvkun G: DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat Cell Biol 2013, 15:491-501.
  • [55]Dillin A, Crawford DK, Kenyon C: Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 2002, 298:830-834.
  • [56]Huang P, Zhou ZQ, Huang RH, Zhou B, Wei QW, Shi FX: Age-dependent expression of forkhead box O proteins in the duodenum of rats. J Zhejiang Univ Sci B 2011, 12:730-735.
  • [57]Buford TW, Cooke MB, Shelmadine BD, Hudson GM, Redd LL, Willoughby DS: Differential gene expression of FoxO1, ID1, and ID3 between young and older men and associations with muscle mass and function. Aging Clin Exp Res 2011, 23:170-174.
  • [58]Barbieri M, Bonafe M, Franceschi C, Paolisso G: Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab 2003, 285:E1064-E1071.
  • [59]Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C: Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003, 424:277-283.
  • [60]Rando TA: Epigenetics and aging. Exp Gerontol 2010, 45:253-254.
  • [61]Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS, Han S, Banko MR, Gozani O, Brunet A: Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 2010, 466:383-387.
  • [62]Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A: Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 2011, 479:365-371.
  • [63]Jin C, Li J, Green CD, Yu X, Tang X, Han D, Xian B, Wang D, Huang X, Cao X, Yan Z, Hou L, Shukeir N, Khaitovich P, Chen CD, Zhang H, Jenuwein T: Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab 2011, 14:161-172.
  • [64]Maures TJ, Greer EL, Hauswirth AG, Brunet A: The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 2011, 10:980-990.
  • [65]Debril MB, Gelman L, Fayard E, Annicotte JS, Rocchi S, Auwerx J: Transcription factors and nuclear receptors interact with the SWI/SNF complex through the BAF60c subunit. J Biol Chem 2004, 279:16677-16686.
  • [66]Puri PL, Mercola M: BAF60 A, B, and Cs of muscle determination and renewal. Genes Dev 2012, 26:2673-2683.
  • [67]Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Adamson SL, Henkelman RM, Wrana JL, Rossant J, Bruneau BG: Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 2004, 432:107-112.
  • [68]Anselmi CV, Malovini A, Roncarati R, Novelli V, Villa F, Condorelli G, Bellazzi R, Puca AA: Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res 2009, 12:95-104.
  • [69]Flachsbart F, Caliebe A, Kleindorp R, Blanche H, von Eller-Eberstein H, Nikolaus S, Schreiber S, Nebel A: Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci USA 2009, 106:2700-2705.
  • [70]Li Y, Wang WJ, Cao H, Lu J, Wu C, Hu FY, Guo J, Zhao L, Yang F, Zhang YX, Li W, Zheng GY, Cui H, Chen X, Zhu Z, He H, Dong B, Mo X, Zeng Y, Tian XL: Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese populations. Hum Mol Genet 2009, 18:4897-4904.
  • [71]Malovini A, Illario M, Iaccarino G, Villa F, Ferrario A, Roncarati R, Anselmi CV, Novelli V, Cipolletta E, Leggiero E, Orro A, Rusciano MR, Milanesi L, Maione AS, Condorelli G, Bellazzi R, Puca AA: Association study on long-living individuals from Southern Italy identifies rs10491334 in the CAMKIV gene that regulates survival proteins. Rejuvenation Res 2011, 14:283-291.
  • [72]Soerensen M, Dato S, Christensen K, McGue M, Stevnsner T, Bohr VA, Christiansen L: Replication of an association of variation in the FOXO3A gene with human longevity using both case–control and longitudinal data. Aging Cell 2010, 9:1010-1017.
  • [73]Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, Masaki KH, Willcox DC, Rodriguez B, Curb JD: FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 2008, 105:13987-13992.
  • [74]Stiernagle T: Maintenance of C. Elegans. 2006. [WormBook] http://www.wormbook.org/chapters/www_strainmaintain/strainmaintain.html webcite
  • [75]Praitis V: Creation of transgenic lines using microparticle bombardment methods. Methods Mol Biol 2006, 351:93-107.
  • [76]Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000, 97:6640-6645.
  • [77]Hosono R, Mitsui Y, Sato Y, Aizawa S, Miwa J: Life span of the wild and mutant nematode Caenorhabditis elegans. Effects of sex, sterilization, and temperature. Exp Gerontol 1982, 17:163-172.
  • [78]Oh SW, Mukhopadhyay A, Dixit BL, Raha T, Green MR, Tissenbaum HA: Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nat Genet 2006, 38:251-257.
  • [79]Timmons L, Court DL, Fire A: Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 2001, 263:103-112.
  文献评价指标  
  下载次数:47次 浏览次数:12次