期刊论文详细信息
Longevity & Healthspan
The SFT-1 and OXA-1 respiratory chain complex assembly factors influence lifespan by distinct mechanisms in C. elegans
Alison Woollard2  Garry Brown2  Carol Delaney1  Ruth Brown2  Peter J Appleford2  Charles Brabin2  Joanne Harding3  Sara Maxwell2 
[1] Present address: Cytogenetics Department, South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK;Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK;Present address: CRUK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
关键词: OXA-1;    SURF1;    C. elegans;    Lifespan;    Aging;    Respiratory chain complex;    Mitochondria;   
Others  :  803815
DOI  :  10.1186/2046-2395-2-9
 received in 2012-06-11, accepted in 2013-03-25,  发布年份 2013
PDF
【 摘 要 】

Background

C. elegans mitochondrial (Mit) mutants have disrupted mitochondrial electron transport chain function, yet, surprisingly, they are often long-lived, a property that has offered unique insights into the molecular mechanisms of aging. In this study, we examine the phenotypic consequences of reducing the expression of the respiratory chain complex assembly factors sft-1 (homologous to human SURF1) and oxa-1 (homologous to human OXA1) by RNA interference (RNAi). Mutations in human SURF1 are associated with Leigh syndrome, a neurodegenerative condition of the brain caused by cytochrome oxidase (COX) deficiency. Both SURF1 and OXA1 are integral proteins of the inner mitochondrial membrane, functioning in the COX assembly pathway.

Results

RNAi of both of these genes in C. elegans is associated with increased longevity, but the mechanism by which lifespan is extended is different in each case. sft-1(RNAi) animals display lifespan extension that is dependent on the daf-16 insulin-like signaling pathway, and associated with sensitivity to oxidative stress. oxa-1(RNAi) animals, in contrast, exhibit increased longevity that is at least partially independent of daf-16, and associated with a reduced developmental rate and increased resistance to oxidative stress.

Conclusions

This study further delineates the consequences of mitochondrial dysfunction within a whole organism that will ultimately help provide new models for human mitochondrial-associated diseases. The difference in phenotype observed upon down-regulation of these two COX assembly factors, as well as phenotypic differences between these factors and other respiratory chain components analyzed thus far, illustrates the complex inter-relationships that exist among energy metabolism, reproduction and aging even in this simplest of metazoan model organisms.

【 授权许可】

   
2013 Maxwell et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708050056527.pdf 741KB PDF download
Figure 4. 38KB Image download
Figure 3. 75KB Image download
Figure 2. 94KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Gropman AL: The neurological presentations of childhood and adult mitochondrial disease: established syndromes and phenotypic variations. Mitochondrion 2004, 4:503-520.
  • [2]Oswald C, Krause-Buchholz U, Rodel G: Knockdown of human COX17 affects assembly and supramolecular organization of cytochrome c oxidase. J Mol Biol 2009, 389:470-479.
  • [3]Zhu Z, Yao J, Johns T, Fu K, De Bie I, Macmillan C, Cuthbert AP, Newbold RF, Wang J, Chevrette M, Brown GK, Brown RM, Shoubridge EA: SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat Genet 1998, 20:337-343. Comment in: Nat Genet 1998, 20:316–317
  • [4]Bonnefoy N, Chalvet F, Hamel P, Slonimski PP, Dujardin G: OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J Mol Biol 1994, 239:201-212.
  • [5]Ventura N, Rea SL, Testi R: Long-lived C. elegans mitochondrial mutants as a model for human mitochondrial-associated diseases. Exp Gerontol 2006, 41:974-991.
  • [6]Rea SL, Graham BH, Nakamaru-Ogiso E, Kar A, Falk MJ: Bacteria, yeast, worms, and flies: exploiting simple model organisms to investigate human mitochondrial diseases. Dev Disabil Res Rev 2010, 16:200-218.
  • [7]Ventura N, Rea SL: Caenorhabditis elegans mitochondrial mutants as an investigative tool to study human neurodegenerative diseases associated with mitochondrial dysfunction. Biotechnol J 2007, 2:584-595.
  • [8]Van Raamsdonk JM, Hekimi S: Reactive oxygen species and aging in Caenorhabditis elegans: causal or casual relationship? Antioxid Redox Signal 2010, 13:1911-1953.
  • [9]Rea SL, Ventura N, Johnson TE: Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS Biol 2007, 5:e259.
  • [10]Feng J, Bussiere F, Hekimi S: Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 2001, 1:633-644.
  • [11]Miyadera H, Amino H, Hiraishi A, Taka H, Murayama K, Miyoshi H, Sakamoto K, Ishii N, Hekimi S, Kita K: Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J Biol Chem 2001, 276:7713-7716.
  • [12]Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G: A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 2003, 33:40-48.
  • [13]Tsang WY, Sayles LC, Grad LI, Pilgrim DB, Lemire BD: Mitochondrial respiratory chain deficiency in Caenorhabditis elegans results in developmental arrest and increased life span. J Biol Chem 2001, 276:32240-32246.
  • [14]Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C: Rates of behavior and aging specified by mitochondrial function during development. Science 2002, 298:2398-2401.
  • [15]Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS: A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 2005, 19:1544-1555.
  • [16]Kayser EB, Sedensky MD, Morgan PG: The effects of complex i function and oxidative damage on lifespan and anesthetic sensitivity in Caenorhabditis elegans. Mech Ageing Dev 2004, 125:455-464.
  • [17]Butler JA, Ventura N, Johnson TE, Rea SL: Long-lived mitochondrial (Mit) mutants of Caenorhabditis elegans utilize a novel metabolism. FASEB J 2010, 24:4977-4988.
  • [18]Van Raamsdonk JM, Meng Y, Camp D, Yang W, Jia X, Benard C, Hekimi S: Decreased energy metabolism extends life span in Caenorhabditis elegans without reducing oxidative damage. Genetics 2010, 185:559-571.
  • [19]Lee SJ, Hwang AB, Kenyon C: Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol 2010, 20:2131-2136.
  • [20]Yang W, Hekimi S: A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 2010, 8:e1000556.
  • [21]Heidler T, Hartwig K, Daniel H, Wenzel U: Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology 2010, 11:183-195.
  • [22]Van Raamsdonk JM, Hekimi S: Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet 2009, 5:e1000361.
  • [23]Hwang AB, Lee SJ: Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection. Aging (Albany NY) 2011, 3:304-310.
  • [24]Ristow M, Zarse K: How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 2010, 45:410-418.
  • [25]Tiranti V, Hoertnagel K, Carrozzo R, Galimberti C, Munaro M, Granatiero M, Zelante L, Gasparini P, Marzella R, Rocchi M, Bayona-Bafaluy MP, Enriquez JA, Uziel G, Bertini E, Dionisi-Vici C, Franco B, Meitinger T, Zeviani M: Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 1998, 63:1609-1621.
  • [26]Tiranti V, Galimberti C, Nijtmans L, Bovolenta S, Perini MP, Zeviani M: Characterization of SURF-1 expression and Surf-1p function in normal and disease conditions. Hum Mol Genet 1999, 8:2533-2540.
  • [27]Jia L, Dienhart M, Schramp M, McCauley M, Hell K, Stuart RA: Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J 2003, 22:6438-6447.
  • [28]Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R: A C. elegans mutant that lives twice as long as wild type. Nature 1993, 366:461-464.
  • [29]Dorman JB, Albinder B, Shroyer T, Kenyon C: The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 1995, 141:1399-1406.
  • [30]Ishii N, Takahashi K, Tomita S, Keino T, Honda S, Yoshino K, Suzuki K: A methyl viologen-sensitive mutant of the nematode Caenorhabditis elegans. Mutat Res 1990, 237:165-171.
  • [31]Allen MA, Hillier LW, Waterston RH, Blumenthal T: A global analysis of C. elegans trans-splicing. Genome Res 2011, 21:255-264.
  • [32]Bonnefoy N, Kermorgant M, Groudinsky O, Dujardin G: The respiratory gene OXA1 has two fission yeast orthologues which together encode a function essential for cellular viability. Mol Microbiol 2000, 35:1135-1145.
  • [33]Bonnefoy N, Kermorgant M, Groudinsky O, Minet M, Slonimski PP, Dujardin G: Cloning of a human gene involved in cytochrome oxidase assembly by functional complementation of an oxa1- mutation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1994, 91:11978-11982.
  • [34]Altamura N, Capitanio N, Bonnefoy N, Papa S, Dujardin G: The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin-sensitive ATP synthase. FEBS Lett 1996, 382:111-115.
  • [35]Bonnefoy N, Fiumera HL, Dujardin G, Fox TD: Roles of Oxa1-related inner-membrane translocases in assembly of respiratory chain complexes. Biochim Biophys Acta 2009, 1793:60-70.
  • [36]Vanfleteren JR, De Vreese A: Rate of aerobic metabolism and superoxide production rate potential in the nematode Caenorhabditis elegans. J Exp Zool 1996, 274:93-100.
  • [37]Braeckman BP, Houthoofd K, Vanfleteren JR: Intermediary metabolism. WormBook 2009, 16:1-24.
  • [38]Dernburg AF, Zalevsky J, Colaiacovo MP, Villeneuve AM: Transgene-mediated cosuppression in the C. elegans germ line. Genes Dev 2000, 14:1578-1583.
  • [39]Lakowski B, Hekimi S: The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1998, 95:13091-13096.
  • [40]Felkai S, Ewbank JJ, Lemieux J, Labbe JC, Brown GG, Hekimi S: CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J 1999, 18:1783-1792.
  • [41]Mukhopadhyay A, Oh SW, Tissenbaum HA: Worming pathways to and from DAF-16/FOXO. Exp Gerontol 2006, 41:928-934.
  • [42]Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N, Yanase S, Ayusawa D, Suzuki K: A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 1998, 394:694-697.
  • [43]Tsang WY, Lemire BD: The role of mitochondria in the life of the nematode, Caenorhabditis elegans. Biochim Biophys Acta 2003, 1638:91-105.
  • [44]Ristow M, Schmeisser S: Extending life span by increasing oxidative stress. Free Radic Biol Med 2011, 51:327-336.
  • [45]Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M: Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 2007, 6:280-293.
  • [46]Yang W, Hekimi S: Two modes of mitochondrial dysfunction lead independently to lifespan extension in Caenorhabditis elegans. Aging Cell 2010, 9:433-447.
  • [47]Zuryn S, Kuang J, Tuck A, Ebert PR: Mitochondrial dysfunction in Caenorhabditis elegans causes metabolic restructuring, but this is not linked to longevity. Mech Ageing Dev 2010, 131:554-561.
  • [48]Gallo M, Park D, Riddle DL: Increased longevity of some C. elegans mitochondrial mutants explained by activation of an alternative energy-producing pathway. Mech Ageing Dev 2011, 132:515-518.
  • [49]Cristina D, Cary M, Lunceford A, Clarke C, Kenyon C: A regulated response to impaired respiration slows behavioral rates and increases lifespan in Caenorhabditis elegans. PLoS Genet 2009, 5:e1000450.
  • [50]Lapointe J, Hekimi S: Early mitochondrial dysfunction in long-lived Mclk1+/− mice. J Biol Chem 2008, 283:26217-26227.
  • [51]Dell'agnello C, Leo S, Agostino A, Szabadkai G, Tiveron C, Zulian A, Prelle A, Roubertoux P, Rizzuto R, Zeviani M: Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet 2007, 16:431-444.
  • [52]Zordan MA, Cisotto P, Benna C, Agostino A, Rizzo G, Piccin A, Pegoraro M, Sandrelli F, Perini G, Tognon G, De Caro R, Peron S, Kronniè TT, Megighian A, Reggiani C, Zeviani M, Costa R: Post-transcriptional silencing and functional characterization of the Drosophila melanogaster homolog of human Surf1. Genetics 2006, 172:229-241.
  • [53]Sulston J, Hodgkin J: Methods. In The Nematode Caenorhabditis elegans. I edition. Edited by Wood WB. New York: Cold Spring Harbor Laboratory Press; 1988:587-606.
  • [54]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806-811.
  • [55]Mello C, Fire A: DNA transformation. Methods Cell Biol 1995, 48:451-482.
  • [56]Kamath RS, Ahringer J: Genome-wide RNAi screening in Caenorhabditis elegans. Methods 2003, 30:313-321.
  • [57]Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J: Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003, 421:231-237.
  • [58]Furger A, Monks J, Proudfoot NJ: The retroviruses human immunodeficiency virus type 1 and Moloney murine leukemia virus adopt radically different strategies to regulate promoter-proximal polyadenylation. J Virol 2001, 75:11735-11746.
  • [59]Seligman AM, Karnovsky MJ, Wasserkrug HL, Hanker JS: Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J Cell Biol 1968, 38:1-14.
  • [60]Hobert O: PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 2002, 32:728-730.
  • [61]Yang JS, Nam HJ, Seo M, Han SK, Choi Y, Nam HG, Lee SJ, Kim S: OASIS: online application for the survival analysis of lifespan assays performed in aging research. PLoS One 2011, 6:e23525.
  文献评价指标  
  下载次数:42次 浏览次数:17次