期刊论文详细信息
Journal of Neuroinflammation
IFN-γ protects from lethal IL-17 mediated viral encephalomyelitis independent of neutrophils
Cornelia C Bergmann2  Daniel J Cua1  Richard M Ransohoff2  David R Hinton3  Stephen A Stohlman2  Carine Savarin2 
[1] Merck Research Laboratories, DNAX Discovery Research, 901 California Ave, Palo Alto, CA, 94304, USA;Department of Neurosciences NC30, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA;Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA, 90033, USA
关键词: Neurotropic coronavirus;    Neutrophils;    IL-17;    IFN-γ;    CD4+ T cells;    Encephalomyelitis;    Central nervous system;   
Others  :  1212585
DOI  :  10.1186/1742-2094-9-104
 received in 2012-03-07, accepted in 2012-04-10,  发布年份 2012
PDF
【 摘 要 】

Background

The interplay between IFN-γ, IL-17 and neutrophils during CNS inflammatory disease is complex due to cross-regulatory factors affecting both positive and negative feedback loops. These interactions have hindered the ability to distinguish the relative contributions of neutrophils, Th1 and Th17 cell-derived effector molecules from secondary mediators to tissue damage and morbidity.

Methods

Encephalitis induced by a gliatropic murine coronavirus was used as a model to assess the direct contributions of neutrophils, IFN-γ and IL-17 to virus-induced mortality. CNS inflammatory conditions were selectively manipulated by adoptive transfer of virus-primed wild-type (WT) or IFN-γ deficient (GKO) memory CD4+ T cells into infected SCID mice, coupled with antibody-mediated neutrophil depletion and cytokine blockade.

Results

Transfer of GKO memory CD4+ T cells into infected SCID mice induced rapid mortality compared to recipients of WT memory CD4+ T cells, despite similar virus control and demyelination. In contrast to recipients of WT CD4+ T cells, extensive neutrophil infiltration and IL-17 expression within the CNS in recipients of GKO CD4+ T cells provided a model to directly assess their contribution(s) to disease. Recipients of WT CD4+ T cells depleted of IFN-γ did not express IL-17 and were spared from mortality despite abundant CNS neutrophil infiltration, indicating that mortality was not mediated by excessive CNS neutrophil accumulation. By contrast, IL-17 depletion rescued recipients of GKO CD4+ T cells from rapid mortality without diminishing neutrophils or reducing GM-CSF, associated with pathogenic Th17 cells in CNS autoimmune models. Furthermore, co-transfer of WT and GKO CD4+ T cells prolonged survival in an IFN-γ dependent manner, although IL-17 transcription was not reduced.

Conclusions

These data demonstrate that IL-17 mediates detrimental clinical consequences in an IFN-γ-deprived environment, independent of extensive neutrophil accumulation or GM-CSF upregulation. The results also suggest that IFN-γ overrides the detrimental IL-17 effector responses via a mechanism downstream of transcriptional regulation.

【 授权许可】

   
2012 Savarin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614100308299.pdf 1589KB PDF download
Figure 7. 35KB Image download
Figure 6. 65KB Image download
Figure 5. 69KB Image download
Figure 4. 43KB Image download
Figure 3. 89KB Image download
Figure 2. 70KB Image download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Schwarzenberger P, Huang W, Ye P, Oliver P, Manuel M, Zhang Z, Bagby G, Nelson S, Kolls JK: Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis. J Immunol 2000, 164:4783-4789.
  • [2]Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK: Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001, 194:519-527.
  • [3]Kolls JK, Linden A: Interleukin-17 family members and inflammation. Immunity 2004, 21:467-476.
  • [4]Tran EH, Prince EN, Owens T: IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines. J Immunol 2000, 164:2759-2768.
  • [5]Kelchtermans H, Billiau A, Matthys P: How interferon-gamma keeps autoimmune diseases in check. Trends Immunol 2008, 29:479-486.
  • [6]Steinman L: A rush to judgment on Th17. J Exp Med 2008, 205:1517-1522.
  • [7]Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, Lindemann MJ, Ho AW, Hai JH, Yu JJ, Jung JW, Filler SG, Masso-Welch P, Edgerton M, Gaffen SL: Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 2009, 206:299-311.
  • [8]Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, Belladonna ML, Vacca C, Conte C, Mosci P: IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 2007, 37:2695-2706.
  • [9]Yue FY, Merchant A, Kovacs CM, Loutfy M, Persad D, Ostrowski MA: Virus-specific interleukin-17-producing CD4+ T cells are detectable in early human immunodeficiency virus type 1 infection. J Virol 2008, 82:6767-6771.
  • [10]Cecchinato V, Franchini G: Th17 cells in pathogenic simian immunodeficiency virus infection of macaques. Curr Opin HIV AIDS 2010, 5:141-145.
  • [11]Arens R, Wang P, Sidney J, Loewendorf A, Sette A, Schoenberger SP, Peters B, Benedict CA: Cutting edge: murine cytomegalovirus induces a polyfunctional CD4 T cell response. J Immunol 2008, 180:6472-6476.
  • [12]Crowe CR, Chen K, Pociask DA, Alcorn JF, Krivich C, Enelow RI, Ross TM, Witztum JL, Kolls JK: Critical role of IL-17RA in immunopathology of influenza infection. J Immunol 2009, 183:5301-5310.
  • [13]McKinstry KK, Strutt TM, Buck A, Curtis JD, Dibble JP, Huston G, Tighe M, Hamada H, Sell S, Dutton RW, Swain SL: IL-10 deficiency unleashes an influenza-specific Th17 response and enhances survival against high-dose challenge. J Immunol 2009, 182:7353-7363.
  • [14]Molesworth-Kenyon SJ, Yin R, Oakes JE, Lausch RN: IL-17 receptor signaling influences virus-induced corneal inflammation. J Leukoc Biol 2008, 83:401-408.
  • [15]Hou W, Kang HS, Kim BS: Th17 cells enhance viral persistence and inhibit T cell cytotoxicity in a model of chronic virus infection. J Exp Med 2009, 206:313-328.
  • [16]El-behi M, Rostami A, Ciric B: Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 2010, 5:189-197.
  • [17]Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE: Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 1989, 124:132-143.
  • [18]Waldburger KE, Hastings RC, Schaub RG, Goldman SJ, Leonard JP: Adoptive transfer of experimental allergic encephalomyelitis after in vitro treatment with recombinant murine interleukin-12. Preferential expansion of interferon-gamma-producing cells and increased expression of macrophage-associated inducible nitric oxide synthase as immunomodulatory mechanisms. Am J Pathol 1996, 148:375-382.
  • [19]Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA: IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 1996, 157:3223-3227.
  • [20]Chu CQ, Wittmer S, Dalton DK: Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J Exp Med 2000, 192:123-128.
  • [21]Irmler IM, Gajda M, Brauer R: Exacerbation of antigen-induced arthritis in IFN-gamma-deficient mice as a result of unrestricted IL-17 response. J Immunol 2007, 179:6228-6236.
  • [22]Haak S, Croxford AL, Kreymborg K, Heppner FL, Pouly S, Becher B, Waisman A: IL-17A and IL-17 F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 2009, 119:61-69.
  • [23]Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ: IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005, 201:233-240.
  • [24]Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD: Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003, 421:744-748.
  • [25]Siffrin V, Radbruch H, Glumm R, Niesner R, Paterka M, Herz J, Leuenberger T, Lehmann SM, Luenstedt S, Rinnenthal JL, Laube G, Luche H, Lehnardt S, Fehling HJ, Griesbeck O, Zipp F: In vivo imaging of partially reversible th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity 2010, 33:424-436.
  • [26]Kroenke MA, Chensue SW, Segal BM: EAE mediated by a non-IFN-gamma/non-IL-17 pathway. Eur J Immunol 2010, 40:2340-2348.
  • [27]Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B: RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 2011, 12:560-567.
  • [28]El-behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang GX, Dittel BN, Rostami A: The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 2011, 12:568-575.
  • [29]Stohlman SA, Bergmann CC, Lin MT, Cua DJ, Hinton DR: CTL effector function within the central nervous system requires CD4+ T cells. J Immunol 1998, 160:2896-2904.
  • [30]Stohlman SA, Hinton DR, Parra B, Atkinson R, Bergmann CC: CD4 T cells contribute to virus control and pathology following central nervous system infection with neurotropic mouse hepatitis virus. J Virol 2008, 82:2130-2139.
  • [31]Savarin C, Bergmann CC, Hinton DR, Ransohoff RM, Stohlman SA: Memory CD4+ T-cell-mediated protection from lethal coronavirus encephalomyelitis. J Virol 2008, 82:12432-12440.
  • [32]Bergmann CC, Parra B, Hinton DR, Ramakrishna C, Dowdell KC, Stohlman SA: Perforin and gamma interferon-mediated control of coronavirus central nervous system infection by CD8 T cells in the absence of CD4 T cells. J Virol 2004, 78:1739-1750.
  • [33]Fleming JO, Trousdale MD, El-Zaatari FA, Stohlman SA, Weiner LP: Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. J Virol 1986, 58:869-875.
  • [34]Bergmann CC, Parra B, Hinton DR, Chandran R, Morrison M, Stohlman SA: Perforin-mediated effector function within the central nervous system requires IFN-gamma-mediated MHC up-regulation. J Immunol 2003, 170:3204-3213.
  • [35]Allan SM, Tyrrell PJ, Rothwell NJ: Interleukin-1 and neuronal injury. Nat Rev Immunol 2005, 5:629-640.
  • [36]Campbell IL, Chiang CS: Cytokine involvement in central nervous system disease. Implications from transgenic mice. Ann N Y Acad Sci 1995, 771:301-312.
  • [37]McGeachy MJ, Cua DJ: Th17 cell differentiation: the long and winding road. Immunity 2008, 28:445-453.
  • [38]Kapil P, Atkinson R, Ramakrishna C, Cua DJ, Bergmann CC, Stohlman SA: Interleukin-12 (IL-12), but not IL-23, deficiency ameliorates viral encephalitis without affecting viral control. J Virol 2009, 83:5978-5986.
  • [39]Li L, Huang L, Vergis AL, Ye H, Bajwa A, Narayan V, Strieter RM, Rosin DL, Okusa MD: IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J Clin Invest 2010, 120:331-342.
  • [40]Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA: Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006, 203:2271-2279.
  • [41]Ettinger R, Kuchen S, Lipsky PE: The role of IL-21 in regulating B-cell function in health and disease. Immunol Rev 2008, 223:60-86.
  • [42]Mills KH: Induction, function and regulation of IL-17-producing T cells. Eur J Immunol 2008, 38:2636-2649.
  • [43]Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005, 6:1123-1132.
  • [44]Toh ML, Kawashima M, Zrioual S, Hot A, Miossec P: IL-17 inhibits human Th1 differentiation through IL-12R beta 2 downregulation. Cytokine 2009, 48:226-230.
  • [45]Kang Z, Altuntas CZ, Gulen MF, Liu C, Giltiay N, Qin H, Liu L, Qian W, Ransohoff RM, Bergmann C, Stohlman S, Tuohy VK, Li X: Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity 2010, 32:414-425.
  • [46]Zhou J, Marten NW, Bergmann CC, Macklin WB, Hinton DR, Stohlman SA: Expression of matrix metalloproteinases and their tissue inhibitor during viral encephalitis. J Virol 2005, 79:4764-4773.
  • [47]Savarin C, Stohlman SA, Atkinson R, Ransohoff RM, Bergmann CC: Monocytes regulate T cell migration through the glia limitans during acute viral encephalitis. J Virol 2010, 84:4878-4888.
  • [48]Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM: IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 2008, 205:1535-1541.
  • [49]Carlson T, Kroenke M, Rao P, Lane TE, Segal B: The Th17-ELR + CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med 2008, 205:811-823.
  • [50]Curtis MM, Way SS: Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology 2009, 126:177-185.
  • [51]Peck A, Mellins ED: Precarious balance: Th17 cells in host defense. Infect Immun 2010, 78:32-38.
  • [52]Schroder K, Hertzog PJ, Ravasi T, Hume DA: Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2004, 75:163-189.
  • [53]Tate MD, Ioannidis LJ, Croker B, Brown LE, Brooks AG, Reading PC: The role of neutrophils during mild and severe influenza virus infections of mice. PLoS One 2011, 6:e17618.
  • [54]McColl SR, Staykova MA, Wozniak A, Fordham S, Bruce J, Willenborg DO: Treatment with anti-granulocyte antibodies inhibits the effector phase of experimental autoimmune encephalomyelitis. J Immunol 1998, 161:6421-6426.
  • [55]Savarin C, Stohlman SA, Rietsch AM, Butchi N, Ransohoff RM, Bergmann CC: MMP9 deficiency does not decrease blood–brain barrier disruption, but increases astrocyte MMP3 expression during viral encephalomyelitis. Glia 2011, 59:1770-1781.
  • [56]Ireland DD, Stohlman SA, Hinton DR, Atkinson R, Bergmann CC: Type I interferons are essential in controlling neurotropic coronavirus infection irrespective of functional CD8 T cells. J Virol 2008, 82:300-310.
  • [57]Cua DJ, Tato CM: Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 2010, 10:479-489.
  • [58]Yen HR, Harris TJ, Wada S, Grosso JF, Getnet D, Goldberg MV, Liang KL, Bruno TC, Pyle KJ, Chan SL, et al.: Tc17 CD8 T cells: functional plasticity and subset diversity. J Immunol 2009, 183:7161-7168.
  • [59]Bettelli E, Korn T, Kuchroo VK: Th17: the third member of the effector T cell trilogy. Curr Opin Immunol 2007, 19:652-657.
  • [60]El-behi M, Ciric B, Yu S, Zhang GX, Fitzgerald DC, Rostami A: Differential effect of IL-27 on developing versus committed Th17 cells. J Immunol 2009, 183:4957-4967.
  • [61]Robertson B, Kong G, Peng Z, Bentivoglio M, Kristensson K: Interferon-gamma-responsive neuronal sites in the normal rat brain: receptor protein distribution and cell activation revealed by Fos induction. Brain Res Bull 2000, 52:61-74.
  • [62]Rubio N, de Felipe C: Demonstration of the presence of a specific interferon-gamma receptor on murine astrocyte cell surface. J Neuroimmunol 1991, 35:111-117.
  文献评价指标  
  下载次数:29次 浏览次数:28次