期刊论文详细信息
Journal of Neuroinflammation
Quinolinic acid toxicity on oligodendroglial cells: relevance for multiple sclerosis and therapeutic strategies
Gilles J Guillemin4  Chai K Lim4  Seray Adams4  Simon P Jones3  Bruce J Brew1  Gayathri Sundaram2 
[1] Department of Neurology, St Vincent’s Hospital, Sydney, Australia;School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia;Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent’s Centre for Applied Medical Research, Sydney, Australia;Neurodegenerative diseases Research Group, Australian School of Advanced Medicine, Faculty of Human Sciences, Macquarie University, Sydney 2109, NSW, Australia
关键词: Neuroinflammation;    Neurodegeneration;    Excitotoxicity;    Quinolinic acid;    Oligodendrocyte;    Multiple sclerosis;   
Others  :  1149915
DOI  :  10.1186/s12974-014-0204-5
 received in 2014-09-01, accepted in 2014-11-17,  发布年份 2014
PDF
【 摘 要 】

The excitotoxin quinolinic acid, a by-product of the kynurenine pathway, is known to be involved in several neurological diseases including multiple sclerosis (MS). Quinolinic acid levels are elevated in experimental autoimmune encephalomyelitis rodents, the widely used animal model of MS. Our group has also found pathophysiological concentrations of quinolinic acid in MS patients. This led us to investigate the effect of quinolinic acid on oligodendrocytes; the main cell type targeted by the autoimmune response in MS. We have examined the kynurenine pathway (KP) profile of two oligodendrocyte cell lines and show that these cells have a limited threshold to catabolize exogenous quinolinic acid. We further propose and demonstrate two strategies to limit quinolinic acid gliotoxicity: 1) by neutralizing quinolinic acid’s effects with anti-quinolinic acid monoclonal antibodies and 2) directly inhibiting quinolinic acid production from activated monocytic cells using specific KP enzyme inhibitors. The outcome of this study provides a new insight into therapeutic strategies for limiting quinolinic acid-induced neurodegeneration, especially in neurological disorders that target oligodendrocytes, such as MS.

【 授权许可】

   
2014 Sundaram et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150405113701818.pdf 1425KB PDF download
Figure 5. 30KB Image download
Figure 4. 29KB Image download
Figure 3. 99KB Image download
Figure 2. 25KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Bender DA, McCreanor GM: The preferred route of kynurenine metabolism in the rat. Biochim Biophys Acta 1982, 717:56-60.
  • [2]Guillemin GJ: Quinolinic acid, the inescapable neurotoxin. FEBS J 2012, 279:1356-1365.
  • [3]Stone TW: Endogenous neurotoxins from tryptophan. Toxicon 2001, 39:61-73.
  • [4]Chen Y, Guillemin GJ: Kynurenine pathway metabolites in humans: disease and healthy States. Int J Tryptophan Res 2009, 2:1-19.
  • [5]Lim CK, Smythe GA, Stocker R, Brew BJ, Guillemin GJ: Characterization of the kynurenine pathway in human oligodendrocytes. In Proceedings of the Eleventh Triennial Meeting of International Study Group for Tryptophan Research: Tokyo Edited by Takai K. 2007, 213-217.
  • [6]Stone TW: Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 1993, 45:309-379.
  • [7]Lekieffre D, Plotkine M, Allix M, Boulu RG: Kynurenic acid antagonizes hippocampal quinolinic acid neurotoxicity: behavioral and histological evaluation. Neurosci Lett 1990, 120:31-33.
  • [8]Cammer W: Oligodendrocyte killing by quinolinic acid in vitro. Brain Res 2001, 896:157-160.
  • [9]Cammer W: Protection of cultured oligodendrocytes against tumor necrosis factor-alpha by the antioxidants coenzyme Q(10) and N-acetyl cysteine. Brain Res Bull 2002, 58:587-592.
  • [10]Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ: Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 2009, 16:77-86.
  • [11]Chen Y, Brew BJ, Guillemin GJ: Characterization of the kynurenine pathway in NSC-34 cell line: implications for amyotrophic lateral sclerosis. J Neurochem 2011, 118:816-825.
  • [12]Espey MG, Chernyshev ON, Reinhard JF Jr, Namboodiri MA, Colton CA: Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 1997, 8:431-434.
  • [13]Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP: Human microglia convert L-tryptophan into the neurotoxin quinolinic acid. Biochem J 1996, 320:595-597.
  • [14]Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ: Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol 2003, 527:105-112.
  • [15]Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ: Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 2001, 78:842-853.
  • [16]Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ: Characterization of the kynurenine pathway in human neurons. J Neurosci 2007, 27:12884-12892.
  • [17]Owe-Young R, Webster NL, Mukhtar M, Pomerantz RJ, Smythe G, Walker D, Armati PJ, Crowe SM, Brew BJ: Kynurenine pathway metabolism in human blood-brain-barrier cells: implications for immune tolerance and neurotoxicity. J Neurochem 2008, 105:1346-1357.
  • [18]Mellor AL, Munn DH: Tryptophan catabolism and regulation of adaptive immunity. J Immunol 2003, 170:5809-5813.
  • [19]Rejdak K, Bartosik-Psujek H, Dobosz B, Kocki T, Grieb P, Giovannoni G, Turski WA, Stelmasiak Z: Decreased level of kynurenic acid in cerebrospinal fluid of relapsing-onset multiple sclerosis patients. Neurosci Lett 2002, 331:63-65.
  • [20]Flanagan EM, Erickson JB, Viveros OH, Chang SY, Reinhard JF: Neurotoxin quinolinic acid is selectively elevated in spinal-cords of rats with experimental allergic encephalomyelitis. J Neurochem 1995, 64:1192-1196.
  • [21]Chiarugi A, Cozzi A, Ballerini C, Massacesi L, Moroni F: Kynurenine 3-mono-oxygenase activity and neurotoxic kynurenine metabolites increase in the spinal cord of rats with experimental allergic encephalomyelitis. Neuroscience 2001, 102:687-695.
  • [22]Verity AN, Bredesen D, Vonderscher C, Handley VW, Campagnoni AT: Expression of myelin protein genes and other myelin components in an oligodendrocytic cell line conditionally immortalized with a temperature-sensitive retrovirus. J Neurochem 1993, 60:577-587.
  • [23]Foster LM, Phan T, Verity AN, Bredesen D, Campagnoni AT: Generation and analysis of normal and shiverer temperature-sensitive immortalized cell-lines exhibiting phenotypic characteristics of oligodendrocytes at several stages of differentiation. Dev Neurosci 1993, 15:100-109.
  • [24]Laurenzi MA, Arcuri C, Rossi R, Marconi P, Bocchini V: Effects of microenvironment on morphology and function of the microglial cell line BV-2. Neurochem Res 2001, 26:1209-1216.
  • [25]Watts AD, Hunt NH, Madigan MC, Chaudhri G: Soluble TNF-a receptors bind and neutralize over-expressed transmembrane TNF-a on macrophages, but do not inhibit its processing. J Leukoc Biol 1999, 66:1005-1013.
  • [26]Lee MC, Ting KK, Adams S, Brew BJ, Chung R, Guillemin GJ: Characterisation of the expression of NMDA receptors in human astrocytes.PLoS One 2010, 5:e14123.
  • [27]Miller CL, Llenos IC, Dulay JR, Barillo MM, Yolken RH, Weis S: Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis 2004, 15:618-629.
  • [28]Rahman A, Ting K, Cullen KM, Braidy N, Brew BJ, Guillemin GJ: The excitotoxin quinolinic acid induces tau phosphorylation in human neurons.PLoS One 2009, 4:e6344.
  • [29]Fujigaki S, Saito K, Takemura M, Fujii H, Wada H, Noma A, Seishima M: Species differences in L-tryptophan-kynurenine pathway metabolism: quantification of anthranilic acid and its related enzymes. Arch Biochem Biophys 1998, 358:329-335.
  • [30]Heyes MP, Saito K, Chen CY, Proescholdt MG, Nowak TS, Li J, Beagles KE, Proescholdt MA, Zito MA, Kawai K, Markey SP: Species heterogeneity between gerbils and rats: quinolinate production by microglia and astrocytes and accumulations in response to ischemic brain injury and systemic immune activation. J Neurochem 1997, 69:1519-1529.
  • [31]Croitoru-Lamoury J, Lamoury FM, Caristo M, Suzuki K, Walker D, Takikawa O, Taylor R, Brew BJ: Interferon-gamma regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO).PLoS One 2011, 6:e14698.
  • [32]Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radiwimmer B, Lehmann I, von Deimling A, Wick W, Platten M: An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011, 478:197-203.
  • [33]Alkondon M, Pereira EF, Eisenberg HM, Kajii Y, Schwarcz R, Albuquerque EX: Age dependency of inhibition of alpha7 nicotinic receptors and tonically active N-methyl-D-aspartate receptors by endogenously produced kynurenic acid in the brain. J Pharmacol Exp Ther 2011, 337:572-582.
  • [34]Kerr SJ, Armati PJ, Guillemin GJ, Brew BJ: Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex. AIDS 1998, 12:355-363.
  • [35]Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, Rothstein JD, Bergles DE: Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 2013, 16:571-579.
  • [36]Kelley B: Industrialization of mAb production technology: the bioprocessing industry at a crossroads. mAbs 2009, 1:443-452.
  • [37]Ransohoff RM: Natalizumab for multiple sclerosis. N Engl J Med 2007, 356:2622-2629.
  • [38]Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F, Nitsch R, Bechmann I: Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. Faseb J 2005, 19:1347-1349.
  • [39]Sakurai K, Zou JP, Tschetter JR, Ward JM, Shearer GM: Effect of indoleamine 2,3-dioxygenase on induction of experimental autoimmune encephalomyelitis. J Neuroimmunol 2002, 129:186-196.
  • [40]Matysiak M, Stasiolek M, Orlowski W, Jurewicz A, Janczar S, Raine CS, Selmaj K: Stem cells ameliorate EAE via an indoleamine 2,3-dioxygenase (IDO) mechanism. J Neuroimmunol 2008, 193:12-23.
  • [41]Yan Y, Zhang GX, Gran B, Fallarino F, Yu S, Li H, Cullimore ML, Rostami A, Xu H: IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol 2010, 185:5953-5961.
  • [42]Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L: Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 2005, 23:1418-1423.
  • [43]Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, Gupta R, Lee LY, Kidd BA, Robinson WH, Sobel RA, Selley ML, Steinman L: Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 2005, 310:850-855.
  文献评价指标  
  下载次数:63次 浏览次数:12次