期刊论文详细信息
BMC Veterinary Research
Magnetic resonance imaging study in a normal Bengal tiger (Panthera tigris) stifle joint
José M. Vázquez2  Alejandro Artiles1  Diego Blanco3  Daniel Morales3  José R. Jáber3  Mario Encinoso1  Alberto Arencibia3 
[1] Veterinary Hospital Los Tarahales, Recta de Los Tarahales 15, Las Palmas de Gran Canaria, 35013, Spain;Department of Anatomy and Comparative Anatomy, Veterinary Faculty, University of Murcia, Campus de Espinardo, Murcia, 30071, Spain;Department of Morphology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, Arucas, 35413, Gran Canaria, Spain
关键词: Tiger;    Stifle joint;    Anatomy;    Magnetic resonance imaging;   
Others  :  1224380
DOI  :  10.1186/s12917-015-0532-4
 received in 2014-05-07, accepted in 2015-08-04,  发布年份 2015
PDF
【 摘 要 】

Background

The purpose of this study was to describe the normal appearance of the bony and soft tissue structures of the stifle joint of a Bengal tiger (Panthera tigris) by low-field magnetic resonance imaging (MRI), and the use of gross anatomical dissections performed as anatomical reference. A cadaver of a mature female was imaged by MRI using specific sequences as the Spin-echo (SE) T1-weighting and Gradient-echo (GE) STIR T2-weighting sequences in sagittal, dorsal and transverse planes, with a magnet of 0.2 Tesla. The bony and articular structures were identified and labelled on anatomical dissections, as well as on the magnetic resonance (MR) images.

Results

MR images showed the bone, articular cartilage, menisci and ligaments of the normal tiger stifle. SE T1-weighted sequence provided excellent resolution of the subchondral bones of the femur, tibia and patella compared with the GE STIR T2-weighted MR images. Articular cartilage and synovial fluid were visualised with high signal intensity in GE STIR T2-weighted sequence, compared with SE T1-weighted sequence where they appeared with intermediate intensity signal. Menisci and ligaments of the stifle joint were visible with low signal intensity in both sequences. The infrapatellar fat pad was hyperintense on SE T1-weighted images and showed low signal intensity on GE STIR T2-weighted images.

Conclusions

MRI provided adequate information of the bony and soft tissues structures of Bengal tiger stifle joints. This information can be used as initial anatomic reference for interpretation of MR stifle images and to assist in the diagnosis of diseases of this region.

【 授权许可】

   
2015 Arencibia et al.

【 预 览 】
附件列表
Files Size Format View
20150909110425248.pdf 3428KB PDF download
Fig. 10. 28KB Image download
Fig. 9. 29KB Image download
Fig. 8. 32KB Image download
Fig. 7. 32KB Image download
Fig. 6. 32KB Image download
Fig. 5. 29KB Image download
Fig. 4. 31KB Image download
Fig. 3. 29KB Image download
Fig. 2. 26KB Image download
Fig. 1. 83KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

【 参考文献 】
  • [1]Wilson DE, Reeder DM. Subfamilia pantherinae mammal species of the world. A taxonomic and geographic reference. 3rd ed. The Johns Hopkins University Press, Baltimore, Maryland; 2005.
  • [2]Chundawat RS, Khan JA, Mallon DP. "Panthera tigris tigris" Red List of Threatened Species. Version 2014.3. International Union for Conservation of Nature 2011.
  • [3]Cagnini DQ, Salgado BS, Linardi JL, Grandi F, Rocha RM, Rocha NS et al.. Ocular melanoma and mammary mucinous carcinoma in an African Lion. BMC Vet Res. 2012; 8:176-80. BioMed Central Full Text
  • [4]Diogo R, Pastor F, De Paz F, Potau JM, Bello-Hellegouarch G, Ferrero EM et al.. The head and neck muscles of the serval and tiger: homologies, evolution, and proposal of a mammalian and a veterinary muscle ontology. Anat Rec. 2012; 295:2157-78.
  • [5]Maas M, Keet DF, Nielen M. Hematologic and serum chemistry reference intervals for free-ranging lions (Panthera leo). Res Vet Sci. 2013; 95:266-8.
  • [6]Ganey TM, Ogden JA, Abou-Madi N, Colville B, Zdyziarski JM, Olsen JH. Meniscal ossification. II. The normal pattern in the tiger knee. Skeletal Radiol. 1994; 23:173-9.
  • [7]Walker M, Phalan D, Jensen J, Johnson J, Drew M, Samii V et al.. Meniscal ossicles in large non-domestic cat. Vet Radiol Ultrasound. 2002; 43:249-54.
  • [8]Ghosh GL, Paul JC, Biswas A, Nandi SK, Biswas BK. Synthetic material used for repair of tibia and fibula fracture in a tiger. Zoo Print J. 2003; 18:1027-8.
  • [9]Shilton CM, Thompson MS, Meisner R, Lock B, Lindsay WA. Nasopharyngeal myxosarcoma in a Bengal tiger (Panthera tigris). J Zoo Wildl Med. 2002; 33:371-7.
  • [10]Ketz-Riley CJ, Galloway DS, Hoover JP, Rochat MC, Bahr RJ, Ritchey JW et al.. Paresis secondary to an extradural hematoma in a Sumatran tiger (Panthera tigris sumatrae). J Zoo Wildl Med. 2004; 35:208-15.
  • [11]Dziallas P, Becker A, Bösing B, Zimmering T, Böer M, Mischke R et al.. Computed tomography diagnostic of a retrobulbar abscess in a white tiger. Tierarztl Prax. 2012; 40:59-63.
  • [12]Snow TM, Litster AL, Gregory RJW, Hanger JJ. Big cat scan: Magnetic resonance imaging of the tiger. Australas Radiol. 2004; 48:93-5.
  • [13]Zeira O, Briola C, Konar M, Dumas MP, Wrzosek MA, Papa V. Suspected neurotoxicity due to Clostridium perfringens type B in a tiger (Panthera tigris). J Zoo Wildl Med. 2012; 43:666-9.
  • [14]Baird DK, Hathlock JT, Rumph PF, Kincaid SA, Visco DM. Low-field magnetic resonance imaging of the canine stifle joint: normal anatomy. Vet Radiol Ultrasound. 1998; 39:87-97.
  • [15]Soler M, Murciano J, Latorre R, Belda E, Rodríguez MJ, Agut A. Ultrasonographic, computed tomographic and magnetic resonance imaging anatomy of the normal canine stifle joint. Vet J. 2007; 174:351-61.
  • [16]Pujol E, Van Bree H, Cauzinille L, Poncet C, Gielen I, Bouvy B. Anatomic study of the canine stifle using low-field magnetic resonance imaging (MRI) and MRI arthrography. Vet Surg. 2011; 40:395-401.
  • [17]Podadera J, Gavin P, Saveraid T, Hall E, Chau J, Makara M. Effects of stifle flexion angle and scan plane on visibility of the normal canine cranial cruciate ligament using low-field magnetic resonance imaging. Vet Radiol Ultrasound. 2014; doi:10.1111/vru.12142.
  • [18]Holcombe SJ, Bertone AL, Biller DS, Haider V. Magnetic resonance imaging of the equine stifle. Vet Radiol Ultrasound. 1995; 36:119-25.
  • [19]Blond L, Thrall DE, Roe SC, Chailleux N, Robertson ID. Diagnostic accuracy of magnetic resonance imaging for meniscal tears in dogs affected with naturally occuring cranial cruciate ligament rupture. Vet Radiol Ultrasound. 2008; 49:425-31.
  • [20]Harper TA, Jones JC, Saunders GK, Daniel GB, Leroith T, Rossmeissl E. Sensitivity of low-field T2 images for detecting the presence and severity of histopathologic meniscal lesions in dogs. Vet Radiol Ultrasound. 2011; 52:428-35.
  • [21]Böttcher P, Armbrust L, Blond L, Brühschwein A, Gavin PR, Gielen I et al.. Effects of observer on the diagnostic accuracy of low-field MRI for detecting canine meniscal tears. Vet Radiol Ultrasound. 2012; 53:628-35.
  • [22]Widmer WR, Buckwalter KA, Braunstein EM, Hill MA, O’Connor BL, Visco DM. Radiographic and magnetic resonance imaging of the stifle joint in experimental osteoarthritis of dogs. Vet Radiol Ultrasound. 1994; 35:371-84.
  • [23]Galindo-Zamora V, Dziallas P, Ludwig DC, Nolte I, Wefstaedt P. Diagnostic accuracy of a short-duration 3 Tesla magnetic resonance protocol for diagnosing stifle joint lesions in dogs with non-traumatic cranial cruciate ligament rupture. BMC Vet Res. 2013; 9:40-8. BioMed Central Full Text
  • [24]Grierson J. Hips, elbows and stifles: common joint diseases in the cat. J Feline Med Surg. 2012; 14:23-30.
  • [25]McLaughlin RM. Surgical diseases of the feline stifle joint. Vet Clin North Am Small Anim Pract. 2002; 32:963-82.
  • [26]Umphlet RC. Feline stifle disease. Vet Clin North Am Small Anim Pract. 1993; 23:897-913.
  • [27]Harasen GL. Feline cranial cruciate rupture: 17 cases and a review of the literature. Vet Comp Orthop Traumatol. 2005; 18:254-7.
  • [28]Mahoney P. Musculoskeletal imaging in the cat. J Feline Med Surg. 2012; 14:13-22.
  • [29]Das S, Thorne R, Langley-Hobbs SJ, Perry KL, Burton NJ, Mosley JR. Patellar ligament rupture in the cat: repair methods and patient outcomes in seven cases. J Feline Med Surg. 2014; doi:10.1177/1098612X14544345.
  • [30]Sandoval J. Articulación de la rodilla. In: José Sandoval Juárez, editor. Tratado de Anatomía Veterinaria. Tomo II. Aparato Locomotor. Madrid; 1998. p. 209–12.
  • [31]Nomina Anatomica Veterinaria. In: Arthrologia. 5th ed. Hannover, Columbia-Missouri, Gent, Sapporo: World Association of Veterinary Anatomists; 2005. p. 36–7.
  • [32]Schaller O, Constantinescu GM. Arthrologia. In: Illustrated Veterinary Anatomical Nomenclature. 2nd ed. Enke Verlag, Sttutgart; 2007: p.92-3.
  • [33]Latorre R, Gil F, Climent S, López O, Henry R, Ayala M, et al. Rodilla, pierna y pie. In: Atlas en color sobre abordajes quirúrgicos a huesos y articulaciones en el perro y el gato. Miembros toracico y pelviano. Buenos Aires: Inter-Médica; 2008. p. 189–209.
  • [34]Freire M, Brown J, Robertson ID, Pease AP, Hash J, Hunter S et al.. Meniscal mineralization in domestic cats. Vet Surg. 2010; 39:545-52.
  • [35]Marino DC, Loughin CA. Diagnostic imaging of the canine stifle: a review. Vet Surg. 2010; 39:284-95.
  • [36]Rahal SC, Fillipi MG, Mamprim MJ, Oliveira HS, Teixeira CR, Teixeira RHF et al.. Meniscal mineralisation in little spotted cats. BMC Vet Res. 2013; 9:50-5. BioMed Central Full Text
  • [37]Samii VF, Dyce J, Pozzi A, Drost WT, Mattoon JS, Green EM et al.. Computed tomographic arthrography of the stifle for detection of cranial and caudal cruciate ligament and meniscal tears in dogs. Vet Radiol Ultrasound. 2009; 50:144-50.
  • [38]Tavernier T, Cotton A. High–versus low-field MR imaging. Radiol Clin N Am. 2005; 43:673-81.
  文献评价指标  
  下载次数:159次 浏览次数:1次